Solution to Problem Set 5

Problem 5.1.

(i) X_{t} can be rewritten as

$$
\begin{aligned}
X_{t} & =a\left(a X_{t-2}+b \epsilon_{t-1}\right)+b \epsilon_{t} \\
& =a^{2}\left(a X_{t-3}+b \epsilon_{t-2}\right)+a b \epsilon_{t-1}+b \epsilon_{t} \\
& \ldots \\
& =a^{t} X_{0}+a^{t-1} b \epsilon_{1}+a^{t-2} b \epsilon_{2}+\ldots+a b \epsilon_{t-1}+b \epsilon_{t} \\
& =a^{t} X_{0}+\sum_{i=1}^{t} a^{t-i} b \epsilon_{i}
\end{aligned}
$$

As $|a|<1$ and X_{0} is a real number, $a^{t} X_{0}<\infty$. Furthermore, as ϵ_{i} is i.i.d and normally distributed on $\mathbb{R}, \sum_{i=1}^{t} a^{t-i} b \epsilon_{i}$ is also normally distributed on \mathbb{R}. It follows that X_{t} is normally distributed on \mathbb{R}. (ii) The first moment (mean) of X_{t} is computed as

$$
\begin{aligned}
\mathbb{E}\left[X_{t}\right] & =\mathbb{E}\left[a^{t} X_{0}+\sum_{i=1}^{t} a^{t-i} b \epsilon_{i}\right] \\
& =a^{t} X_{0}+\sum_{i=1}^{t} a^{t-i} b \mathbb{E}\left[\epsilon_{i}\right] \\
& =a^{t} X_{0}+\sum_{i=1}^{t} a^{t-i} b \mu_{\epsilon} \\
& =a^{t} X_{0}+b \mu_{\epsilon} \frac{1-a^{t}}{1-a}
\end{aligned}
$$

The second central moment (variance) of X_{t} is

$$
\begin{aligned}
\operatorname{Var}\left[X_{t}\right] & =\operatorname{Var}\left[a^{t} X_{0}+\sum_{i=1}^{t} a^{t-i} b \epsilon_{i}\right] \\
& =\sum_{i=1}^{t} a^{2(t-i)} b^{2} \operatorname{Var}\left[\epsilon_{i}\right] \\
& =\sum_{i=1}^{t} a^{2(t-i)} b^{2} \sigma_{\epsilon}^{2} \\
& =b^{2} \sigma_{\epsilon}^{2} \frac{1-a^{2 t}}{1-a^{2}}
\end{aligned}
$$

(iii)

$$
\lim _{t \rightarrow \infty} \mathbb{E}\left[X_{t}\right]=\lim _{t \rightarrow \infty}\left(a^{t} X_{0}+b \mu_{\epsilon} \frac{1-a^{t}}{1-a}\right)=\frac{b \mu_{\epsilon}}{1-a}
$$

$$
\lim _{t \rightarrow \infty} \operatorname{Var}\left[X_{t}\right]=\lim _{t \rightarrow \infty}\left(b^{2} \sigma_{\epsilon}^{2} \frac{1-a^{2 t}}{1-a^{2}}\right)=\frac{b^{2} \sigma_{\epsilon}^{2}}{1-a^{2}}
$$

If X_{t} is normally distributed with mean $\frac{b \mu_{\epsilon}}{1-a}$ and variance $\frac{b^{2} \sigma_{\epsilon}^{2}}{1-a^{2}}$, we also have that $X_{t+1}=a X_{t}+b \epsilon_{t+1}$ is normally distributed. Mean and variance of X_{t+1} are computed as follow.

$$
\begin{aligned}
\mathbb{E}\left[X_{t+1}\right] & =\mathbb{E}\left[a X_{t}+b \epsilon_{t+1}\right]=a \frac{b \mu_{\epsilon}}{1-a}+b \mu_{\epsilon}=\frac{b \mu_{\epsilon}}{1-a} \\
\operatorname{Var}\left[X_{t+1}\right] & =\operatorname{Var}\left[a X_{t}+b \epsilon_{t+1}\right]=a^{2} \frac{b^{2} \sigma_{\epsilon}^{2}}{1-a^{2}}+b^{2} \sigma_{\epsilon}^{2}=\frac{b^{2} \sigma_{\epsilon}^{2}}{1-a^{2}}
\end{aligned}
$$

These moments also hold for X_{t+2} and so on. So, the limits constitute an invariant normal distribution.

Problem 5.2.

(i) The consumer's decision problem reads

$$
\max _{c_{t}^{y}, c_{t+1}^{c}, k_{t+1}}\left\{\log \left(c_{t}^{y}\right)+\beta \mathbb{E}_{t}\left[\log \left(c_{t+1}^{o}\right)\right] \mid c_{t}^{y}+k_{t+1}=w_{t} \wedge c_{t+1}^{o}=R_{t+1} k_{t+1} \wedge 0 \leq k_{t+1} \leq w_{t}\right\}
$$

The FOCs:

$$
\begin{align*}
& 1=\mathbb{E}_{t}\left[\frac{c_{t+1}^{o}}{c_{t}^{y}} \frac{1}{\beta R_{t+1}}\right] \tag{1}\\
& c_{t}^{y}=w_{t}-k_{t+1} \tag{2}\\
& c_{t+1}^{o}=R_{t+1} k_{t+1} \tag{3}
\end{align*}
$$

(ii) The firm's decision problem reads

$$
\max _{K_{t}, L_{t}}\left\{\theta_{t} K_{t}^{\alpha} L_{t}^{1-\alpha}-w_{t} L_{t}-R_{t} K_{t} \mid\left(K_{t}, L_{t}\right) \in \mathbb{R}_{+}^{2}\right\}
$$

The first order conditions are

$$
\begin{align*}
& R_{t}=\alpha \theta_{t} K_{t}^{\alpha-1} L_{t}^{1-\alpha}=\alpha \theta_{t} k_{t}^{\alpha-1} \tag{4}\\
& w_{t}=(1-\alpha) \theta_{t} K_{t}^{\alpha} L_{t}^{-\alpha}=(1-\alpha) \theta_{t} k_{t}^{\alpha} \tag{5}
\end{align*}
$$

where $k_{t}=K_{t} / L_{t}$.
(iii) Equations (1)-(5) determine the general equilibrium for all t. Note that as (3) holds for all t, it follows that $c_{t}^{o}=R_{t} k_{t}$. By substitution, one can obtain

$$
\begin{equation*}
k_{t+1}=\frac{\beta}{1+\beta}(1-\alpha) \theta_{t} k_{t}^{\alpha} \tag{6}
\end{equation*}
$$

So, function \mathcal{K} is given by

$$
\mathcal{K}\left(k_{t}, \theta_{t}\right)=\frac{\beta}{1+\beta}(1-\alpha) \theta_{t} k_{t}^{\alpha} .
$$

(iii) We solve for $k_{\min }$ and $k_{\max }$ using the following equations

$$
\begin{aligned}
& \mathcal{K}\left(k_{\min }, \theta_{\min }\right):=\frac{\beta}{1+\beta}(1-\alpha) \theta_{\min } k_{\min }^{\alpha}=k_{\min } \\
& \mathcal{K}\left(k_{\max }, \theta_{\max }\right):=\frac{\beta}{1+\beta}(1-\alpha) \theta_{\max } k_{\max }^{\alpha}=k_{\max }
\end{aligned}
$$

This yields

$$
\begin{aligned}
& k_{\min }=\left(\frac{\beta}{1+\beta}(1-\alpha) \theta_{\min }\right)^{1 /(1-\alpha)} \\
& k_{\max }=\left(\frac{\beta}{1+\beta}(1-\alpha) \theta_{\max }\right)^{1 /(1-\alpha)}
\end{aligned}
$$

As $\mathcal{K}\left(k_{\min }, \theta_{\min }\right)=k_{\min }, \mathcal{K}\left(k_{\max }, \theta_{\max }\right)=k_{\text {max }}$, and \mathcal{K} is increasing and concave in k, to verify that $\mathcal{K}\left(k, \theta_{\min }\right) \leq k \leq \mathcal{K}\left(k, \theta_{\max }\right)$ for all $k \in\left[k_{\min }, k_{\max }\right]$, it suffices to show that $\mathcal{K}^{\prime}\left(k, \theta_{\min }\right)<1$ for all $k \in\left[k_{\min }, k_{\max }\right]$, where $\mathcal{K}^{\prime}:=\frac{\partial \mathcal{K}}{\partial k}$. For all $k \in\left[k_{\min }, k_{\max }\right]$, we have that

$$
\mathcal{K}^{\prime}\left(k, \theta_{\min }\right) \leq \mathcal{K}^{\prime}\left(k_{\min }, \theta_{\min }\right)=\alpha<1
$$

Alternatively, one can show that

$$
\lim _{k \searrow 0} \mathcal{K}^{\prime}\left(k, \theta_{\min }\right)=\lim _{k \searrow 0} \frac{\beta}{1+\beta}(1-\alpha) \alpha \theta_{\min } k^{\alpha-1}=\infty>1
$$

So, there is one stable set

$$
\left[k_{\min }, k_{\max }\right]=\left[\left(\frac{\beta}{1+\beta}(1-\alpha) \theta_{\min }\right)^{1 /(1-\alpha)},\left(\frac{\beta}{1+\beta}(1-\alpha) \theta_{\max }\right)^{1 /(1-\alpha)}\right]
$$

