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Solution to Problem Set 5

Problem 5.1.
(i) X can be rewritten as

Xt = CL(CLXt_Q + bét_l) + bEt
= aQ(aXt_g + ber—o) + abe,_1 + bey
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As |a] < 1 and Xj is a real number, a’! Xy < co. Furthermore, as ¢; is i.i.d and normally distributed
on R, Zle a'~"be; is also normally distributed on R. It follows that X; is normally distributed on R.
(ii) The first moment (mean) of X; is computed as
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The second central moment (variance) of Xy is
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(iii)
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If X} is normally distributed with mean % and variance f_‘;‘g , we also have that Xy;1 = aXi+besyq

is normally distributed. Mean and variance of X,y are computed as follow.
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These moments also hold for X;42 and so on. So, the limits constitute an invariant normal distribution.

Problem 5.2.
(i) The consumer’s decision problem reads

max {108;(0?) + BE[log(cfy)]lef + ki1 = we Acfyy = Regakipn A0 < kypq < wt}
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C?tJ = wy — kgy1 (2)
i1 = Reprken (3)

(ii) The firm’s decision problem reads

glag{ethLtlfa —w Ly — R (Ky, Ly) € Ri}
ty it

The first order conditions are

Rt = Oéethaingia = a@tkf’1 (4)
wy = (1 — O[)HthlL;a == (1 - a)Gtkf‘ (5)

where ky = K/ L.
(iii) Equations (1)-(5) determine the general equilibrium for all ¢. Note that as (3) holds for all ¢, it
follows that c¢f = R:k;. By substitution, one can obtain

b = 1f5<1 )k (6)

So, function X is given by
’C(k‘t, Ht) = L(1 — a)@tkf.
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(iii) We solve for kmyin and kpax using the following equations
K:(kminy gmin) = i(1 - a)emin rorllin = kmin
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This yields
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As K(kmin, Omin) = kmin, K(kmax, Omax) = kmax, and K is increasing and concave in k, to verify that
K(k,Omin) < k < K(k,Omax) for all k € [kmin, kmax), it suffices to show that K'(k,Omin) < 1 for all
ki € [kmin, kmax], where K’ := 2% For all k € [kmin, kmax], We have that

Icl(k7(9min) < Kl(kminyemin) =a<l

Alternatively, one can show that
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So, there is one stable set
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