Solution to Problem Set 3

Problem 3.1.

(a) First we assume that $0<\sigma<1$, for the case $\sigma \geq 1$, we can apply the same argument as in Problem 1.1.d. Define the budget set
$\mathbb{B}\left(e^{\infty}, R^{\infty}, \bar{s}_{-1}\right)=\left\{\left(c_{t}, s_{t}\right)_{t \in \mathbb{T}} \mid c_{t} \geq 0, c_{t}+s_{t} \leq e_{t}+R_{t} s_{t-1}\right.$ for all $t \in \mathbb{T}, s_{-1}=\bar{s}_{-1}$ given, $\left.\lim _{t \rightarrow \infty} q_{t} s_{t} \geq 0\right\}$, where \mathbb{T} is defined as in class. The lifetime utility function is written as

$$
U\left(\left(c_{t}\right)_{t \in \mathbb{T}}\right)=\sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\sigma}-1}{1-\sigma}
$$

Iterating the budget constraint and using the NPG condition, one can obtain

$$
\sum_{t=0}^{\infty} q_{t} c_{t} \leq \sum_{t=0}^{\infty} q_{t} e_{t}+R_{0} \bar{s}_{-1}:=M,
$$

where we impose $0<M<\infty$, and $q_{t}:=\left(R_{1} \cdot R_{2} \cdots R_{t}\right)^{-1}$ as in class. Now define the lifetime budget set

$$
\mathcal{B}\left(M, q, s_{-1}\right):=\left\{\left(c_{t}\right)_{t \in \mathbb{T}} \mid \sum_{t=0}^{\infty} q_{t} c_{t} \leq M \wedge c_{t} \geq 0 \quad \forall t \in \mathbb{T} \wedge s_{-1}=\bar{s}_{-1} \text { given }\right\}
$$

where $q:=\left(q_{t}\right)_{t \in \mathbb{T}}$.
So, the decision problem is written as

$$
\max _{\left\{c_{t}\right\}_{t \in \mathbb{T}}}\left\{U\left(\left(c_{t}\right)_{t \in \mathbb{T}}\right) \mid\left(c_{t}\right)_{t \in \mathbb{T}} \in \mathcal{B}(M)\right\}
$$

(b) By the same argument in Problem 1.1.b, the Lagrangian is written as

$$
\begin{equation*}
\mathcal{L}\left(\left(c_{t}\right)_{t \in \mathbb{T}}, \lambda\right)=\sum_{t=0}^{\infty} \beta^{t} \frac{t_{t}^{1-\sigma}-1}{1-\sigma}-\lambda\left(\sum_{t=0}^{\infty} q_{t} c_{t}-M\right) \tag{1}
\end{equation*}
$$

First order conditions

$$
\begin{array}{ll}
\frac{\partial \mathcal{L}}{\partial c_{t}}=0: & c_{t}^{-\sigma}=\lambda q_{t} \\
\frac{\partial \mathcal{L}}{\partial \lambda}=0: & \sum_{t=0}^{\infty} q_{t} c_{t}=M \tag{3}
\end{array}
$$

for all $t \in \mathbb{T}$, and $s_{-1}=\bar{s}_{-1}$ given and $\lim _{t \rightarrow \infty} q_{t} s_{t}^{*}=0$ (TVC) must hold. As (2) holds for all t, (2) can be rewritten as

$$
\begin{equation*}
c_{t+1}=\beta^{1 / \sigma}\left(\frac{q_{t}}{q_{t+1}}\right)^{1 / \sigma} c_{t}=\left(\beta R_{t+1}\right)^{1 / \sigma} c_{t} \tag{4}
\end{equation*}
$$

Using (4) to rewrite (3)

$$
\begin{equation*}
c_{0} \sum_{t=0}^{\infty}\left(\beta^{t} q_{t}^{\sigma-1}\right)^{1 / \sigma}=M \tag{5}
\end{equation*}
$$

This results in

$$
\begin{equation*}
c_{0}=\bar{c}_{0} M \quad \text { where } \quad \bar{c}_{0}:=\left(\sum_{t=0}^{\infty}\left(\beta^{t} q_{t}^{\sigma-1}\right)^{1 / \sigma}\right)^{-1} \tag{6}
\end{equation*}
$$

So for any period t, we obtain

$$
\begin{equation*}
c_{t}=\bar{c}_{t} M / q_{t} \quad \text { where } \quad \bar{c}_{t}:=\left(\beta^{t} q_{t}^{\sigma-1}\right)^{1 / \sigma} /\left(\sum_{t=0}^{\infty}\left(\beta^{t} q_{t}^{\sigma-1}\right)^{1 / \sigma}\right) \tag{7}
\end{equation*}
$$

The solution to s_{t} is then determined using the period budget constraint.
(c) We easily see that

$$
\begin{equation*}
\sum_{t=0}^{\infty} \bar{c}_{t}=1 \tag{8}
\end{equation*}
$$

Therefore, (7) implies that the optimal consumption expenditure $q_{t} c_{t}$ each period is a fraction \bar{c}_{t} of discounted lifetime income M. The consumption share \bar{c}_{t} is exclusively determined by consumption prices $\left(q_{t}\right)_{t \in \mathbb{T}}$ and independent of these prices if $\sigma=1$.

Problem 1.2.

(i) Given arbitrary $W_{1}=e_{1}+R_{1} s_{0} \geq-E_{1}$, the decision problem is written as

$$
V_{1}\left(W_{1}\right)=\max _{c_{1}, s_{1}}\left\{\log \left(c_{1}\right)+\beta \log \left(e_{2}+s_{1} R_{2}\right) \mid c_{1} \geq 0, c_{1}+s_{1} \leq W_{1}, s_{1} \geq-E_{1}\right\}
$$

(ii) We can argue that $c>0$ and that the budget constraint must bind at the optimum. So, the problem can be rewritten as

$$
V_{1}\left(W_{1}\right)=\max _{s_{1}}\left\{\log \left(W_{1}-s_{1}\right)+\beta \log \left(e_{2}+s_{1} R_{2}\right) \mid s_{1} \geq-E_{1}\right\}
$$

The first order condition is written as

$$
\begin{equation*}
S_{1}\left(W_{1}\right)=\frac{\beta W_{1}-e_{2} / R_{2}}{1+\beta} \tag{9}
\end{equation*}
$$

$C_{1}\left(W_{1}\right)$ is determined by $W_{1}-S_{1}\left(W_{1}\right)$. Thus

$$
\begin{equation*}
C_{1}\left(W_{1}\right)=W_{1}-\frac{\beta W_{1}-e_{2} / R_{2}}{1+\beta}=\frac{W_{1}+e_{2} / R_{2}}{1+\beta} \tag{10}
\end{equation*}
$$

(iii)

$$
\begin{aligned}
V_{1}\left(W_{1}\right) & =\log \left(W_{1}-S_{1}\left(W_{1}\right)\right)+\beta \log \left(e_{2}+S_{1}\left(W_{1}\right) R_{2}\right) \\
& =\log \left(\frac{W_{1}+e_{2} / R_{2}}{1+\beta}\right)+\beta \log \left(\frac{\beta R_{2}\left(W_{1}+e_{2} / R_{2}\right)}{1+\beta}\right) \\
& =(1+\beta) u\left(\frac{W_{1}+e_{2} / R_{2}}{1+\beta}\right)+\beta \log \left(\beta R_{2}\right)
\end{aligned}
$$

Now we take derivative of V_{1} w.r.t W_{1} and obtain

$$
\begin{equation*}
V_{1}^{\prime}\left(W_{1}\right)=\frac{1+\beta}{W_{1}+e_{2} / R_{2}} \tag{11}
\end{equation*}
$$

We also have

$$
\begin{equation*}
u^{\prime}\left(W_{1}-S_{1}\left(W_{1}\right)\right)=u^{\prime}\left(C_{1}\left(W_{1}\right)\right)=\frac{1+\beta}{W_{1}+e_{2} / R_{2}} \tag{12}
\end{equation*}
$$

So, we conclude $V_{1}^{\prime}\left(W_{1}\right)=u^{\prime}\left(W_{1}-S_{1}\left(W_{1}\right)\right)=u^{\prime}\left(C_{1}\left(W_{1}\right)\right)$.
(iv)

$$
\begin{equation*}
V_{0}\left(W_{0}\right)=\max _{s_{0}}\left\{\log \left(W_{0}-s_{0}\right)+\beta V_{1}\left(W_{1}\right) \mid s_{0} \geq-E_{0}\right\} \tag{13}
\end{equation*}
$$

(v) FOC:

$$
\begin{equation*}
\frac{1}{c_{0}}=\beta R_{1} V_{1}^{\prime}\left(W_{1}\right) \tag{14}
\end{equation*}
$$

Using (11), we obtain

$$
\begin{align*}
c_{0}^{*} & =\frac{W_{1}^{*}+e_{2} / R_{2}}{R_{1} \beta(1+\beta)} \tag{15}\\
& =\frac{e_{1} / R_{1}+s_{0}^{*}+e_{2} /\left(R_{1} R_{2}\right)}{\beta(1+\beta)} \tag{16}\\
& =\frac{e_{1} / R_{1}+\left(e_{0}+R_{0} s_{-1}-c_{0}^{*}\right)+e_{2} /\left(R_{1} R_{2}\right)}{\beta(1+\beta)} \tag{17}\\
& =\frac{e_{0}+e_{1} q_{1}+e_{2} q_{2}+R_{0} s_{-1}}{1+\beta+\beta^{2}} \tag{18}
\end{align*}
$$

This solution c_{0}^{*} is the same as in Problem 1.1 when $\sigma=1$ and $T=2$. Solution s_{0}^{*} can be derived as below.

$$
\begin{equation*}
s_{0}^{*}=e_{0}+R_{0} s_{-1}-c_{0}^{*} \tag{19}
\end{equation*}
$$

(vi)

$$
\begin{align*}
c_{1}^{*} & =\frac{W_{1}^{*}+e_{2} / R_{2}}{1+\beta} \tag{20}\\
& =\frac{e_{1}+R_{1} s_{0}^{*}+e_{2} / R_{2}}{1+\beta} \tag{21}\\
& =\frac{e_{1}+R_{1}\left(e_{0}+R_{0} s_{-1}-c_{0}^{*}\right)+e_{2} / R_{2}}{1+\beta} \tag{22}\\
& =\frac{e_{0}+e_{1} q_{1}+e_{2} q_{2}+R_{0} s_{-1}-c_{0}^{*}}{q_{1}(1+\beta)} \tag{23}\\
& =\frac{\beta}{1+\beta+\beta^{2}} \frac{e_{0}+e_{1} q_{1}+e_{2} q_{2}+R_{0} s_{-1}}{q_{1}} \tag{24}
\end{align*}
$$

s_{1}^{*} is determined by $s_{1}^{*}=e_{1}+R_{1} s_{0}^{*}-c_{1}^{*}$. So, we can see that the solutions c_{1}^{*} and s_{1}^{*} are the same as in Problem 1.1 when $\sigma=1$ and $T=2$.

