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Solution to Problem Set 3

Problem 3.1.

(a) First we assume that 0 < o < 1,

Problem 1.1.d. Define the budget set
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for the case 0 > 1, we can apply the same argument as in
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where T is defined as in class. The lifetime utility function is written as
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Iterating the budget constraint and using the NPG condition, one can obtain
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where we impose 0 < M < oo, and ¢,
set

B(M, q, 8_1) =

-R;)~! as in class. Now define the lifetime budget
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where ¢ := (g )ser-

So, the decision problem is written as
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(b) By the same argument in Problem 1.1.b, the Lagrangian is written as
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First order conditions
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for all t € T, and s_; = 5_; given and tlim qts; = 0 (TVC) must hold. As (2) holds for all ¢, (2) can
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be rewritten as
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Using (4) to rewrite (3)
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This results in
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So for any period ¢, we obtain
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The solution to s; is then determined using the period budget constraint.

(c) We easily see that
da=1 (8)
=0

Therefore, (7) implies that the optimal consumption expenditure g.c; each period is a fraction ¢ of
discounted lifetime income M. The consumption share ¢ is exclusively determined by consumption
prices (q)ter and independent of these prices if o = 1.

Problem 1.2.
(i) Given arbitrary W7 = e; + R1s9 > —Ej, the decision problem is written as

Vi(Wh) = max{log(cl) + Plog(e2 + s1R2)|c1 > 0,¢1 + 51 < Wh,s1 > —E1}
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(ii) We can argue that ¢ > 0 and that the budget constraint must bind at the optimum. So, the
problem can be rewritten as

Vi(Wh) = Iré?x{log(Wl — s1) + Plog(ea + s1Ra)|s1 > —El}

The first order condition is written as

BW1 — ea/Rs

C’l(Wl) iS delermined by [/[/1 —_ Sl(Wl) Thus

W1 —ea/Rs _ Wi + e2/Ra
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(iii)
Vl(Wl) = log(W1 -5 (Wl)) + Blog(ez + 51 (W1)R2)
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Now we take derivative of V4 w.r.t W7 and obtain
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We also have
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So, we conclude V{(W7) = o/ (W1 — S1(W7)) = o/ (C1(W)).

(iv)
Vo(Wo) = max{log(Wo — so) + BVi(W1)lso > —Eo} (13)
(v) FOC:
= BRVI(W) (14

Using (11), we obtain
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This solution ¢ is the same as in Problem 1.1 when ¢ = 1 and 7" = 2. Solution sj can be derived as
below.
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s} is determined by s7 = e1 + R1s; — ¢]. So, we can see that the solutions ¢} and s] are the same as
in Problem 1.1 when ¢ =1 and 7' = 2.



