Marten Hillebrand, Hoang Van Khieu

Problem Set 2

Problem 2.1. Consider the following dynamical systems in discrete time:

(i) $\mathbb{X} = \mathbb{R}_+, \varphi = \mathcal{K}$ with \mathcal{K} defined as part (d) of Problem 1.2.

(ii)
$$\mathbb{X} = [-1, 1], \varphi(x) = Bx^3 + (1 - B)x, 0 < B < 4$$

Analyze each case by proceeding as follows:

- (a) Verify that (φ, \mathbb{X}) is indeed a dynamical system, i.e., φ maps \mathbb{X} into itself.
- (b) Compute all fixed points of φ and analyze their local stability properties (depending on the parameter B in case (ii)).
- (c) Illustrate the global dynamic behavior in a diagram. (Hint: Distinguish the cases 0 < B < 1, 1 < B < 2, and B > 2 in case (ii). You may therefore plot φ for $B = \frac{1}{2}$, $B = \frac{3}{2}$, and B = 4).

Problem 2.2. Consider the class of linear difference equations on $\mathbb{X} = \mathbb{R}^2$ generated by time one-map

$$\varphi(x) = Ax \tag{1}$$

where

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}.$$
 (2)

Recall that the Eigenvalues of A are the solutions λ_1, λ_2 to the condition $\chi_A(\lambda) := \det[A - \lambda I_2] = 0$ where I_2 is the 2×2 identity matrix. Denote by tr(A) := $a_{11} + a_{22}$ the trace and det(A) the determinant of A.

- (i) Derive a condition on A under which φ has a unique steady state \bar{x} .
- (ii) Derive a formula which determines the Eigenvalues λ_1 , λ_2 of A as a function of tr(A) and det(A). Which restrictions ensure that both Eigenvalues are real/complex?
- (iii) Use your previous formula to determine all fixed points \bar{x} and their stability properties for the following cases:

(a)
$$A_1 = \begin{bmatrix} -\frac{1}{2} & \frac{1}{4} \\ -\frac{3}{4} & \frac{1}{2} \end{bmatrix}$$

(b) $A_2 = \begin{bmatrix} \frac{1}{2} & \frac{3}{4} \\ -\frac{1}{6} & 0 \end{bmatrix}$
(c) $A_3 = \begin{bmatrix} 1 & \frac{1}{4} \\ 9 & 1 \end{bmatrix}$

(iv) In case (c) in (iii), determine the so-called *stable manifold*, i.e., the subset $\mathbb{M} \subset \mathbb{X}$ of initial values $x_0 \in \mathbb{X}$ with the property that $\lim_{n\to\infty} \varphi^n(x_0) = \bar{x}$. Hint: Compute \mathbb{M} as the Eigenspace associated with the smaller Eigenvalue. Sketch the set \mathbb{M} in a diagram.

Enjoy!

Please direct questions to: hkhieu@uni-mainz.de