Solution to Problem Set 2

Problem 2.1.

(i.a) $\varphi(k)=\mathcal{K}(k)=\frac{\beta}{1+\beta}(1-\alpha) A k^{\alpha}, k \geq 0 . \varphi$ is increasing and $\lim _{k \searrow 0} \varphi(k)=0$, and $\lim _{k \rightarrow+\infty} \varphi(k)=+\infty$. Thus, $\varphi=\mathcal{K}$ maps $X=\mathbb{R}_{+}$into itself.
(i.b) There are two fixed points $\bar{k}_{1}=0$ and $\bar{k}_{2}=\left(\frac{\beta(1-\alpha) A}{1+\beta}\right)^{1 / 1-\alpha}$. Consider the limit $\lim _{k \searrow 0} \frac{\varphi(k)}{k}=\infty$. This implies that $\varphi(k)>k$ for k close to zero. Thus, \bar{k}_{1} is unstable. We have $\left|\varphi^{\prime}\left(\bar{k}_{2}\right)\right|<1$; thus, \bar{k}_{2} is locally stable.
(i.c)

Figure 1: Dynamics of capital

(ii.a) First notice that when $1<B<4, x_{1}=-\left(\frac{B-1}{3 B}\right)^{1 / 2}$, and $x_{2}=\left(\frac{B-1}{3 B}\right)^{1 / 2}$ solve $\varphi^{\prime}(x)=0 . \varphi$ is therefore increasing in $\left[-1, x_{1}\right)$, decreasing in $\left(x_{1}, x_{2}\right)$, and increasing in $\left(x_{2}, 1\right]$.
Consider the limits $\lim _{x \rightarrow-1} \varphi(x)=-1, \lim _{x \rightarrow 1} \varphi(x)=1, \lim _{x \rightarrow x_{1}} \varphi(x)=2 B\left(\frac{B-1}{3 B}\right)^{3 / 2}, \lim _{x \rightarrow x_{2}} \varphi(x)=-2 B\left(\frac{B-1}{3 B}\right)^{3 / 2}$. It is straightforward to verify that $2 B\left(\frac{B-1}{3 B}\right)^{3 / 2}$ is increasing in B and less than one for $0<B<4$, and that $-2 B\left(\frac{B-1}{3 B}\right)^{3 / 2}$ is decreasing and greater than -1 for $0<B<4$. When $0<B<1, \varphi(x)$ is increasing, and $\lim _{x \rightarrow-1} \varphi(x)=-1$ and $\lim _{x \rightarrow 1} \varphi(x)=1$
(ii.b) There are 3 fixed points $\bar{x}_{1}=-1, \bar{x}_{2}=0$, and $\bar{x}_{3}=1$. Evaluating $\varphi^{\prime}(x)$ at these fixed points to conclude that \bar{x}_{1} and \bar{x}_{3} are unstable; \bar{x}_{2} is locally asymptotically stable if $0<B<2$ and unstable if $2<B<4$.
(ii.c)

Figure 2: $B=\frac{1}{2}$

Figure 3: $B=\frac{3}{2}$

Figure 4: $B=4$

Problem 2.2.

(i) Assume $\overline{\mathrm{x}}$ is a unique steady state, then we must have

$$
\begin{gathered}
\overline{\mathbf{x}}=A \overline{\mathbf{x}} \\
\Longleftrightarrow\left(I_{2}-A\right) \overline{\mathbf{x}}=\mathbf{0}_{2}
\end{gathered}
$$

If $\operatorname{det}\left[I_{2}-A\right] \neq 0$, then $\overline{\mathbf{x}}=\left[I_{2}-A\right]^{-1} \mathbf{0}_{2}$ is a unique fixed point.

$$
\begin{aligned}
& \Longleftrightarrow 1-\left(a_{11}+a_{22}\right)+\left(a_{11} a_{22}-a_{12} a_{21}\right) \neq 0 \\
& \Longleftrightarrow \operatorname{tr}(A)-\operatorname{det}(A) \neq 1
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \operatorname{det}\left[\left(A-\lambda I_{2}\right]=0\right. \\
\Longleftrightarrow & \left|\begin{array}{cc}
a_{11}-\lambda & a_{12} \\
a_{21} & a_{22}-\lambda
\end{array}\right|=0 \\
\Longleftrightarrow & \lambda^{2}-\left(a_{11}+a_{22}\right) \lambda+\left(a_{11} a_{22}-a_{12} a_{21}\right)=0 \\
\Longleftrightarrow & \lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=0 \\
\Longleftrightarrow & \lambda_{1,2}=\frac{\operatorname{tr}(A)}{2} \pm \sqrt{\frac{(\operatorname{tr}(A))^{2}}{4}-\operatorname{det}(A)}
\end{aligned}
$$

Both Eigenvalues are real if and only if $\frac{(\operatorname{tr}(A))^{2}}{4} \geq \operatorname{det}(A)$. Otherwise, they are complex.
(iii.a) $\operatorname{tr}\left(A_{1}\right)-\operatorname{det}\left(A_{1}\right)=1 / 16 \neq 1$, so $\varphi(x)$ has a unique fixed point $\bar{x}=0$. As φ is linear, the Jacobian is the same as A_{1}. Eigenvalues of the Jacobian are $\lambda_{1,2}= \pm \frac{1}{4}$. So the fixed point is locally asymptotically stable.
(iii.b) $\operatorname{tr}\left(A_{2}\right)-\operatorname{det}\left(A_{2}\right)=3 / 8 \neq 1$, so $\varphi(x)$ has a unique fixed point $\bar{x}=0$. As φ is linear, the Jacobian is the same as A_{2}. Eigenvalues of the Jacobian are $\lambda_{1,2}=\frac{1}{4} \pm i \frac{1}{4}$. So the fixed point is locally asymptotically stable.
(iii.c) $\operatorname{tr}\left(A_{3}\right)-\operatorname{det}\left(A_{3}\right)=13 / 4 \neq 1$, so $\varphi(x)$ has a unique fixed point $\bar{x}=0$. As φ is linear, the Jacobian is the same as A_{3}. Eigenvalues of the Jacobian are $\lambda_{1}=-1 / 2$, and $\lambda_{2}=5 / 2$. So the fixed point is unstable.
(iv) Let $v=\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]^{\prime}$ be the Eigenvector associated with the smaller Eigenvalue. v is determined by

$$
\begin{aligned}
& {\left[A_{3}-\lambda_{1} I_{2}\right] v=0 } \\
\Rightarrow & {\left[\begin{array}{cc}
\frac{3}{2} & \frac{1}{4} \\
9 & \frac{3}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=0 } \\
\Rightarrow & v_{2}=-6 v_{1}
\end{aligned}
$$

So the stable manifold is given as

$$
\mathbb{M}=\left\{(x, y) \in \mathbb{R}^{2} \mid y=-6 x\right\}
$$

