Solution to Problem Set 2

Problem 2.1. (i.a) $\varphi(k) = \mathcal{K}(k) = \frac{\beta}{1+\beta}(1-\alpha)Ak^{\alpha}, k \ge 0. \ \varphi$ is increasing and $\lim_{k\searrow 0} \varphi(k) = 0$, and $\lim_{k\to+\infty} \varphi(k) = +\infty$. Thus, $\varphi = \mathcal{K}$ maps $X = \mathbb{R}_+$ into itself. (i.b) There are two fixed points $\bar{k}_1 = 0$ and $\bar{k}_2 = \left(\frac{\beta(1-\alpha)A}{1+\beta}\right)^{1/1-\alpha}$. Consider the limit $\lim_{k\searrow 0} \frac{\varphi(k)}{k} = \infty$. This implies that $\varphi(k) > k$ for k close to zero. Thus, \bar{k}_1 is unstable. We have $|\varphi'(\bar{k}_2)| < 1$; thus, \bar{k}_2 is locally stable. (i.c)

(ii.a) First notice that when 1 < B < 4, $x_1 = -\left(\frac{B-1}{3B}\right)^{1/2}$, and $x_2 = \left(\frac{B-1}{3B}\right)^{1/2}$ solve $\varphi'(x) = 0$. φ is therefore increasing in $[-1, x_1)$, decreasing in (x_1, x_2) , and increasing in $(x_2, 1]$. Consider the limits $\lim_{x \to -1} \varphi(x) = -1$, $\lim_{x \to 1} \varphi(x) = 1$, $\lim_{x \to x_1} \varphi(x) = 2B\left(\frac{B-1}{3B}\right)^{3/2}$, $\lim_{x \to x_2} \varphi(x) = -2B\left(\frac{B-1}{3B}\right)^{3/2}$. It is straightforward to verify that $2B\left(\frac{B-1}{3B}\right)^{3/2}$ is increasing in B and less than one for 0 < B < 4, and that $-2B\left(\frac{B-1}{3B}\right)^{3/2}$ is decreasing and greater than -1 for 0 < B < 4. When 0 < B < 1, $\varphi(x)$ is increasing, and $\lim_{x \to -1} \varphi(x) = -1$ and $\lim_{x \to 1} \varphi(x) = 1$.

(ii.b) There are 3 fixed points $\bar{x}_1 = -1$, $\bar{x}_2 = 0$, and $\bar{x}_3 = 1$. Evaluating $\varphi'(x)$ at these fixed points to conclude that \bar{x}_1 and \bar{x}_3 are unstable; \bar{x}_2 is locally asymptotically stable if 0 < B < 2 and unstable if 2 < B < 4.

Figure 3: $B = \frac{3}{2}$

Figure 4: B = 4

Problem 2.2.

(i) Assume $\bar{\mathbf{x}}$ is a unique steady state, then we must have

$$\bar{\mathbf{x}} = A\bar{\mathbf{x}}$$
$$\iff (I_2 - A)\bar{\mathbf{x}} = \mathbf{0}_2$$

If det $[I_2 - A] \neq 0$, then $\bar{\mathbf{x}} = [I_2 - A]^{-1} \mathbf{0}_2$ is a unique fixed point.

$$\iff 1 - (a_{11} + a_{22}) + (a_{11}a_{22} - a_{12}a_{21}) \neq 0$$
$$\iff \operatorname{tr}(A) - \det(A) \neq 1$$

(ii)

$$\det[(A - \lambda I_2] = 0$$

$$\iff \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0$$

$$\iff \lambda^2 - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{12}a_{21}) = 0$$

$$\iff \lambda^2 - \operatorname{tr}(A)\lambda + \det(A) = 0$$

$$\iff \lambda_{1,2} = \frac{\operatorname{tr}(A)}{2} \pm \sqrt{\frac{(\operatorname{tr}(A))^2}{4} - \det(A)}$$

Both Eigenvalues are real if and only if $\frac{(\operatorname{tr}(A))^2}{4} \ge \det(A)$. Otherwise, they are complex. (iii.a) $\operatorname{tr}(A_1) - \det(A_1) = 1/16 \ne 1$, so $\varphi(x)$ has a unique fixed point $\overline{x} = 0$. As φ is linear, the Jacobian is the same as A_1 . Eigenvalues of the Jacobian are $\lambda_{1,2} = \pm \frac{1}{4}$. So the fixed point is locally asymptotically stable.

(iii.b) $tr(A_2) - det(A_2) = 3/8 \neq 1$, so $\varphi(x)$ has a unique fixed point $\bar{x} = 0$. As φ is linear, the Jacobian is the same as A_2 . Eigenvalues of the Jacobian are $\lambda_{1,2} = \frac{1}{4} \pm i \frac{1}{4}$. So the fixed point is locally asymptotically stable.

(iv) Let $v = \begin{bmatrix} v_1 & v_2 \end{bmatrix}'$ be the Eigenvector associated with the smaller Eigenvalue. v is determined by

$$\begin{bmatrix} A_3 - \lambda_1 I_2] v = 0 \\ \Rightarrow \begin{bmatrix} \frac{3}{2} & \frac{1}{4} \\ 9 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0 \\ \Rightarrow v_2 = -6v_1$$

So the stable manifold is given as

$$\mathbb{M} = \{ (x, y) \in \mathbb{R}^2 | y = -6x \}.$$