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Joint with Mark Dean and Daniel Martin
Common decisions have many options
Searching all makes no sense

But resulting decision quality little understood

o Center of policy and business agenda
e Lies outside standard choice theory

Can search models reconcile incomplete information and
revealed preference?
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Method

e Develop a theory of information search and choice
e Develop an experimental data set to match the theory
e Key innovation: Enriching the data set in theory and practices

e 'Choice process’ data: Records how subjects’ choices change
with consideration time
e Corresponding experimental design
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Results

e Theoretical results

e Characterize a method of search: Alternative-Based
e Characterize a stopping rule: Reservation-Based

e We do not explicitly justify these models as ‘rational’

e Describe a plausible class of search and choice models that
may be applicable in a wide range of situations

o Related to Simon's [1955] satisficing model - and similar in
spirit

e Axioms provide test of whether model is appropriate

e Environment may change behavior within this model class

e In fact, reservation strategy is optimal under certain
assumptions
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Results

e Experimental Results

e Develop a technique to make choice process data observable

e Subjects behave broadly in line with alternative-based and
reservation-based

e Reservation levels respond to environmental factors
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Alternative-Based Search

DM has a fixed utility function

Searches sequentially through the available options,
Always chooses the best alternative of those searched
May not search the entire choice set

‘Standard model’ of information search

e Stigler [1960]
e McCall [1970]
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e Standard choice data cannot be used to test ABS
e We introduce ‘choice process' data
e Records how choice changes with contemplation time

e C(A): Standard choice data - choice from set A
e Cx(t): Choice process data - choice made from set A after
contemplation time t
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X : Finite grand choice set

X : Non-empty subsets of X

Z € {Z;}; : Sequences of elements of X
Z set of sequences Z

Zp C Z: set of sequences s.t. Z; CAe X

Notation



A Definition of Choice Process

Definition
A Choice Process Data Set (X, C) comprises of:

e finite set X

e choice function C: X — Z

such that C(A) € Z4VAe X

e Ca(t): choice made from set A after contemplation time t
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Alternative-Based Search

e DM is equipped with a utility function
u: X —R
e and a search correspondence
S: X —-Z

with SA(t) - 5,4(t+5)
e Such that the DM always chooses best option of those

searched

Calt) =
A(t) argxénsi?t)U(X)
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Revealed Preference and ABS

Finally choosing x over y does not imply (strict) revealed
preference

e DM may not know that y was available
Replacing y with x does imply (strict) revealed preference

e DM must know that y is available, as previously chose it
e Now chooses x, so must prefer x over y

Choosing x and y at the same time reveals indifference
Use =AB5 to indicate ABS strict revealed preference

Use ~AB5to indicate revealed indifference
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e A useful lemma:

e P, I binary relations on (finite X), | symmetric
e Pl=PUI
e There exists a v : X — IR that represents P/
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Characterizing ABS

e Choice process data will have an ABS representation if and
only if =85 and ~AB5 can be represented by a utility
function u

e A useful lemma:

P, I binary relations on (finite X), | symmetric
Pl =PUl
There exists a v : X — IR that represents P/

xPy —  v(x)>v(y)
xly — y(x)=v(y)

If and only if P and / satisfy Only Weak Cycles
x1 Plxo, ..., xp_1 Plxn Plxy

then there is no k such that xj Pxy 1



Theorem 1

Theorem
Choice process data admits an ABS representation if and only if
=ABS and ~ABS satisfy Only Weak Cycles
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Search

Reservation-Based

e ABS silent on when people stop searching

Consider a refinement: Reservation-based search (RBS)

e DM has a reservation utility level
e Stops searching if and only finds an option with utility above
this level

Equivalent to Simon's [1955] concept of satisficing

Also optimal stopping rule for fixed search costs and no
learning
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RBS

e Choice process data admits an RBS representation if we can
find

e An ABS representation (u, S)
e A reservation level p

e Such that search stops if and only if an above reservation
object is found

if u(x) < pV xe&Sa(t)/Athen Sa(s) D Sa(t) for some s >t
if u(x) < psomex € Sa(t)/Athen Sa(s) = Sa(t) forV s>t

e Note: Implies complete search of sets comprising only of
below-reservation objects
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Revealed Preference and RBS

e Final choice can now contain revealed preference information
e |[f final choice is below-reservation utility
e How do we know if an object is below reservation?

e If they are non-terminal: Search continues after that object
has been chosen
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Directly and Indirectly Non-Terminal Sets

e Directly Non-Terminal: x € XV such that

® X € CA(t)
o Calt) # Calt+5)
e Indirectly Non Terminal: x € X/
e y€E XN
e x,y €Aand y € limi_o Ca(t)
o Let XN = xIuXxN
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Add New Revealed Preference Information

e If one of x of y is in X'V and x is finally chosen from some
set A then, x =Ly
e If xisisin X”V, then A must have been fully searched, and so
x must be preferred to y

o If yisin X”V, then either y is below reservation level, in which
case the set is fully searched, or x is above reservation utility

o Let mRBS=-Ly-AB5



Theorem 2

Theorem
Choice process data admits an RBS representation if and only if
=RBS and ~ABS satisfy Only Weak Cycles
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Experiment

e We now introduce an experiment designed to test ABS and
RBS models

@ Design an environment in which choice mistakes are obvious

e 'Full information’ ranking of alternatives clear
e Show that mistakes occur in standard choice task

® Use a new procedure to elicit choice process data

e Test ABS
e Test RBS
e Estimate reservation levels
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Experimental Environment

Experiment 1; pure choice experiment

Subjects choose between ‘sums’
four plus eight minus four

Value of option is the value of the sum

'Full information’ ranking obvious, but uncovering value takes
effort

6 treatments

e 2 x complexity (3 and 7 operations)
e 3 x choice set size (10, 20 and 40 options)



Choice and Mistakes

Round Current selection:
2 0f 30 [ four plus eight minus four
Choose one:

(5] | zero

three plus five minus seven

four plus two plus zero

four plus three minus six

four plus eight minus four

three minus three plus one

five plus one minus one

eight plus two minus five

0] three plus six minus five
(] | four minus two minus one
e | five plus five minus one

Finished



Results
Failure rates (%) (22 subjects, 657 choices)

Complexity

Set Size 3 7
10 7 24
20 22 56
40 29 65




Complexity

Set Size 3 7
10 0.41 1.69
20 1.10 4.00
40 2.30 7.12

Results
Average Loss ($)
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Take-Home from Experiment 1

e In this environment, people clearly make mistakes
e Choice does not imply revealed preference
e Can behavior be explained by ABS and RBS model?
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Eliciting Choice Process Data

@ Allow subjects to select any alternative at any time

e Can change selection as often as they like

® Choice will be recorded at a random time between 0 and 120
seconds unknown to subject
e Incentivizes subjects to always keep selected current best

alternative
e Treat the sequence of selections as choice process data

©® Round can end in two ways

o After 120 seconds has elapsed
e When subject presses the ‘finish’ button
e We discard any rounds in which subjects do not press ‘finish’



Stage 1: Selection

Round Current selection:
2 0f 30 [ four plus eight minus four
Choose one:

ZEro

three plus five minus seven

four plus two plus zero

four plus three minus six

four plus eight minus four

three minus three plus one

five plus one minus one

eight plus two minus five

three plus six minus five

(] | four minus two minus one
e | five plus five minus one

Finished



Stage 2: Choice Recorded

NEW YORK UNIVERSITY

Choice Recorded

In this round, your choice was recorded after 9 seconds. At that time, you had selected:

| four plus four minus six |




Do We Get Richer Data from Choice Process

Methodology?

978 Rounds, 76 Subjects
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Testing ABS

e Reminder: Choice process data has ABS representation if
~ABSis consistent

e Implies subjects must always switch to higher-valued objects
(Condition 1)

e Calculate Houtman-Maks index for Condition 1

e Largest subset of choice data that is consistent with condition



Fraction of subj

012 3 4

Fraction of subjects

0 1 2 3 4

Houtman-Maks Measure for ABS

Actual Data

6 7 8 9 1
HM Index

Simulated Data

T T T T
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Traditional vs ABS Revealed Preference

Traditional ABS
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Satisficing Behavior

a la Simon [1955]

10 Options, Complexity 3

20 Opticns, Complexity 3

40 Options, Complexity 3
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Estimating Reservation Levels

Choice process data allows observation of subjects

e Stopping search
e Continuing to search

Allows us to

e Test satisficing model
e Estimate reservation levels

Assume that reservation level is observed with some error

Can estimate reservation levels for each treatment using
maximum likelihood



Estimated Reservation Levels

Complexity

Set Size 3 7
10 9.54 6.35
20 10.76 8.94
40 14.91 10.16




HM Indices for Estimated Reservation Levels

Complexity

Set Size 3 7
10 0.91 0.83
20 0.83 0.77
40 0.84 0.78
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Reservation Based Search and Optimality

e Reservation-based search is optimal for a utility maximizing
agent with

o Fixed per-unit search costs
e Assumes value of object drawn from a fixed distribution

e Optimal reservation levels

e Fall with search costs
e Unchanged with size of choice sets

e Our subjects

e Respond optimally to increased complexity
e Search too hard in large choice sets relative to small ones



Question 1: Does Choice Process Elicitation Change

Behavior?
Failure Rate

Complexity

Set Size 3 7
10 Choice Process 11 47
Normal Choice 7 24

20 Choice Process 27 59
Normal Choice 22 56

40 Choice Process 38 81
Normal Choice 29 65
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Question 2: Can Data be Described by a ‘Reservation
Stopping Time'?
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Search Order

e Choice process data also makes search order visible
e Want to test how search order is affected by

e Screen position
o Complexity

e Ran a new treatment in which complexity varies within choice
round
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Search Order

e In aggregate, subjects search

e From the top of the list to the bottom of the list
e From simple objects to more complicated objects

e We can also identify different search types

e Top-Bottom (TB) searchers
e Simple-Complex (SC) searchers



Search Types

Search Types
TB Search
Yes No
SC Search Yes 7 4
No 7 2




Search Types Predict Choice - Example 1

Round Current selecti
90f30 [ Zero |
Choose one:
[ zero |
o] four minus four plus five ]
o] three plus twa |
[ Seven plus three plus two ]

€ five plus nine minus four minus four

three plus two minus eight minus four plus five plus six minus nine plus eight plus seven

four plus zero plus two plus one minus two

(o] four minus ten plus zero minus one plus two plus zero plus five plus two

C six minus two minus two minus four plus four

four minus one |

five plus four minus six plus one |

eight plus four minus three minus two plus one minus three plus three

five plus six minus seven minus nine plus two plus five plus three minus one

seven plus zero minus eight minus one plus five plus six minus one minus four minus two

four plus zero plus three plus two minus two minus nine plus six

three minus ane |

four minus four minus two plus four minus ten plus seven plus three plus three plus one

five plus zero minus four minus twe plus five plus three minus five

two |
o four plus five minus four minus one minus one
o] i four plus one plus ten ]

Finished



Search Types Predict Choice - Example 2

Round Current
210f30 | Zero
Choose one:

=T ]

seven minus one

two minus six plus seven plus three plus seven minus three minus one

three plus eight plus one minus ten plus two

three minus ten plus two plus five plus three plus one

five minus one minus eight plus six plus eight minus nine plus six minus four

eight
@] four plus three minus seven plus one

y
&
g
&
i
8

seven minus two plus zero minus two plus two minus nine plus six plus four minus one

] three plus three plus three plus five minus five minus three plus six minus nine minus one

eight plus one minus four minus six plus three

eight minus one minus three minus one minus three plus four plus thres

six plus three

five minus three plus six plus one plus one minus three minus three plus one

five plus one minus one plus zero plus six minus five

three plus zero plus two minus two minus three minus three plus five

even plus five minus eight
o Seven minus four plus three minus one minus four
= four minus two minus two plus five

five minus three plus zero |

[ Finished
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Search Types Predict Choice

In Example 1, pure simple-complex searchers find best option
more than pure top-bottom searchers

e 100% vs 66% of the time

In Example 2, pure top-bottom searchers find best option
more than pure simple-complex searchers

e 80% vs 66% of the time

Differences have low significance due to small sample sizes
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Standard choice objects
e e.g. lotteries
Different decision making types
o e.g. effect of aging
Real applications
e e.g. choice of retirement portfolio

Level k reasoning

What Next?
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