Search, Satisficing, and Revealed Preference

Professor Andrew Caplin, NYU The Center for Emotional Economics, University of Mainz

June 28-29, 2010

Outline

2 Theory

3 Experiment

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 めんぐ

• Joint with Mark Dean and Daniel Martin

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Joint with Mark Dean and Daniel Martin
- Common decisions have many options

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Joint with Mark Dean and Daniel Martin
- Common decisions have many options
- Searching all makes no sense

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Joint with Mark Dean and Daniel Martin
- Common decisions have many options
- Searching all makes no sense
- But resulting decision quality little understood

- Joint with Mark Dean and Daniel Martin
- Common decisions have many options
- Searching all makes no sense
- But resulting decision quality little understood
 - Center of policy and business agenda

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Joint with Mark Dean and Daniel Martin
- Common decisions have many options
- Searching all makes no sense
- But resulting decision quality little understood
 - Center of policy and business agenda
 - Lies outside standard choice theory

- Joint with Mark Dean and Daniel Martin
- Common decisions have many options
- Searching all makes no sense
- But resulting decision quality little understood
 - Center of policy and business agenda
 - Lies outside standard choice theory
- Can search models reconcile incomplete information and revealed preference?

• Develop a theory of information search and choice

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Develop a theory of information search and choice
- Develop an experimental data set to match the theory

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Develop a theory of information search and choice
- Develop an experimental data set to match the theory
- Key innovation: Enriching the data set in theory and practices

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Develop a theory of information search and choice
- Develop an experimental data set to match the theory
- Key innovation: Enriching the data set in theory and practices
 - 'Choice process' data: Records how subjects' choices change with consideration time

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Develop a theory of information search and choice
- Develop an experimental data set to match the theory
- Key innovation: Enriching the data set in theory and practices
 - 'Choice process' data: Records how subjects' choices change with consideration time
 - Corresponding experimental design

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• Theoretical results

- Theoretical results
 - Characterize a method of search: Alternative-Based

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Theoretical results
 - Characterize a method of search: Alternative-Based
 - Characterize a stopping rule: Reservation-Based

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Theoretical results
 - Characterize a method of search: Alternative-Based
 - Characterize a stopping rule: Reservation-Based
- We do not explicitly justify these models as 'rational'

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Theoretical results
 - Characterize a method of search: Alternative-Based
 - Characterize a stopping rule: Reservation-Based
- We do not explicitly justify these models as 'rational'
 - Describe a plausible class of search and choice models that may be applicable in a wide range of situations

- Theoretical results
 - Characterize a method of search: Alternative-Based
 - Characterize a stopping rule: Reservation-Based
- We do not explicitly justify these models as 'rational'
 - Describe a plausible class of search and choice models that may be applicable in a wide range of situations
 - Related to Simon's [1955] satisficing model and similar in spirit

- Theoretical results
 - Characterize a method of search: Alternative-Based
 - Characterize a stopping rule: Reservation-Based
- We do not explicitly justify these models as 'rational'
 - Describe a plausible class of search and choice models that may be applicable in a wide range of situations
 - Related to Simon's [1955] satisficing model and similar in spirit
 - Axioms provide test of whether model is appropriate

- Theoretical results
 - Characterize a method of search: Alternative-Based
 - Characterize a stopping rule: Reservation-Based
- We do not explicitly justify these models as 'rational'
 - Describe a plausible class of search and choice models that may be applicable in a wide range of situations
 - Related to Simon's [1955] satisficing model and similar in spirit
 - Axioms provide test of whether model is appropriate
 - Environment may change behavior within this model class

- Theoretical results
 - Characterize a method of search: Alternative-Based
 - Characterize a stopping rule: Reservation-Based
- We do not explicitly justify these models as 'rational'
 - Describe a plausible class of search and choice models that may be applicable in a wide range of situations
 - Related to Simon's [1955] satisficing model and similar in spirit
 - Axioms provide test of whether model is appropriate
 - Environment may change behavior within this model class
 - In fact, reservation strategy is optimal under certain assumptions

<□ > < @ > < E > < E > E のQ @

• Experimental Results

- Experimental Results
 - Develop a technique to make choice process data observable

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Experimental Results
 - Develop a technique to make choice process data observable
 - Subjects behave broadly in line with alternative-based and reservation-based

- Experimental Results
 - Develop a technique to make choice process data observable
 - Subjects behave broadly in line with alternative-based and reservation-based
 - Reservation levels respond to environmental factors

Outline

1 Introduction

2 Theory Alternative Based Search Reservation Based Search

3 Experiment

Outline

1 Introduction

2 Theory Alternative Based Search Reservation Based Search

Alternative-Based Search

• DM has a fixed utility function

(ロ)、(型)、(E)、(E)、 E) の(の)

- DM has a fixed utility function
- Searches sequentially through the available options,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- DM has a fixed utility function
- Searches sequentially through the available options,
- Always chooses the best alternative of those searched

- DM has a fixed utility function
- Searches sequentially through the available options,
- Always chooses the best alternative of those searched
- May not search the entire choice set

- DM has a fixed utility function
- Searches sequentially through the available options,
- Always chooses the best alternative of those searched
- May not search the entire choice set
- 'Standard model' of information search

- DM has a fixed utility function
- Searches sequentially through the available options,
- Always chooses the best alternative of those searched
- May not search the entire choice set
- 'Standard model' of information search
 - Stigler [1960]

- DM has a fixed utility function
- Searches sequentially through the available options,
- Always chooses the best alternative of those searched
- May not search the entire choice set
- 'Standard model' of information search
 - Stigler [1960]
 - McCall [1970]
• Standard choice data cannot be used to test ABS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Standard choice data cannot be used to test ABS
- We introduce 'choice process' data

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Standard choice data cannot be used to test ABS
- We introduce 'choice process' data
- Records how choice changes with contemplation time

- Standard choice data cannot be used to test ABS
- We introduce 'choice process' data
- Records how choice changes with contemplation time
 - C(A): Standard choice data choice from set A

- Standard choice data cannot be used to test ABS
- We introduce 'choice process' data
- Records how choice changes with contemplation time
 - C(A): Standard choice data choice from set A
 - C_A(t): Choice process data choice made from set A after contemplation time t

• X : Finite grand choice set

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- X : Finite grand choice set
- \mathcal{X} : Non-empty subsets of X

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- X : Finite grand choice set
- \mathcal{X} : Non-empty subsets of X
- $Z \in \{Z_t\}_t^\infty$: Sequences of elements of \mathcal{X}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- X : Finite grand choice set
- \mathcal{X} : Non-empty subsets of X
- $Z \in \{Z_t\}_t^\infty$: Sequences of elements of \mathcal{X}
- \mathcal{Z} set of sequences Z

- X : Finite grand choice set
- \mathcal{X} : Non-empty subsets of X
- $Z \in \{Z_t\}_t^\infty$: Sequences of elements of \mathcal{X}
- \mathcal{Z} set of sequences Z
- $\mathcal{Z}_A \subset Z$: set of sequences s.t. $Z_t \subset A \in \mathcal{X}$

A Definition of Choice Process

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A Choice Process Data Set (X, C) comprises of:

- finite set X
- choice function $C: \mathcal{X} \to \mathcal{Z}$

such that $C(A) \in \mathcal{Z}_A \ \forall \ A \in \mathcal{X}$

• $C_A(t)$: choice made from set A after contemplation time t

Alternative-Based Search

• DM is equipped with a utility function

 $u:X\to \mathbb{R}$

Alternative-Based Search

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• DM is equipped with a utility function

$$u: X \to \mathbb{R}$$

• and a search correspondence

$$S: \mathcal{X} \to \mathcal{Z}$$

with $S_A(t) \subseteq S_A(t+s)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• DM is equipped with a utility function

$$u: X \to \mathbb{R}$$

• and a search correspondence

$$S: \mathcal{X} \to \mathcal{Z}$$

with $S_A(t) \subseteq S_A(t+s)$

 Such that the DM always chooses best option of those searched

$$\mathcal{C}_{\mathcal{A}}(t) = \arg \max_{x \in \mathcal{S}_{\mathcal{A}}(t)} u(x)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Finally choosing x over y does not imply (strict) revealed preference

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Finally choosing x over y does not imply (strict) revealed preference
 - DM may not know that y was available

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Finally choosing x over y does not imply (strict) revealed preference
 - DM may not know that y was available
- Replacing y with x does imply (strict) revealed preference

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Finally choosing x over y does not imply (strict) revealed preference
 - DM may not know that y was available
- Replacing y with x does imply (strict) revealed preference
 - DM must know that y is available, as previously chose it

- Finally choosing x over y does not imply (strict) revealed preference
 - DM may not know that y was available
- Replacing y with x does imply (strict) revealed preference
 - DM must know that y is available, as previously chose it
 - Now chooses x, so must prefer x over y

- Finally choosing x over y does not imply (strict) revealed preference
 - DM may not know that y was available
- Replacing y with x does imply (strict) revealed preference
 - DM must know that y is available, as previously chose it
 - Now chooses x, so must prefer x over y
- Choosing x and y at the same time reveals indifference

- Finally choosing x over y does not imply (strict) revealed preference
 - DM may not know that y was available
- Replacing y with x does imply (strict) revealed preference
 - DM must know that y is available, as previously chose it
 - Now chooses x, so must prefer x over y
- Choosing x and y at the same time reveals indifference
- Use \succ^{ABS} to indicate ABS strict revealed preference

- Finally choosing x over y does not imply (strict) revealed preference
 - DM may not know that y was available
- Replacing y with x does imply (strict) revealed preference
 - DM must know that y is available, as previously chose it
 - Now chooses x, so must prefer x over y
- Choosing x and y at the same time reveals indifference
- Use \succ^{ABS} to indicate ABS strict revealed preference
- Use \sim^{ABS} to indicate revealed indifference

• Choice process data will have an ABS representation if and only if \succ^{ABS} and \sim^{ABS} can be represented by a utility function u

- Choice process data will have an ABS representation if and only if \succ^{ABS} and \sim^{ABS} can be represented by a utility function u
- A useful lemma:

- Choice process data will have an ABS representation if and only if \succ^{ABS} and \sim^{ABS} can be represented by a utility function u
- A useful lemma:
 - P, I binary relations on (finite X), I symmetric

- Choice process data will have an ABS representation if and only if \succ^{ABS} and \sim^{ABS} can be represented by a utility function u
- A useful lemma:
 - P, I binary relations on (finite X), I symmetric

•
$$PI = P \cup I$$

- Choice process data will have an ABS representation if and only if \succ^{ABS} and \sim^{ABS} can be represented by a utility function u
- A useful lemma:
 - P, I binary relations on (finite X), I symmetric
 - $PI = P \cup I$
 - There exists a $v: X \to \mathbb{R}$ that represents PI

$$\begin{array}{rcl} x P y & \rightarrow & v(x) > v(y) \\ x I y & \rightarrow & y(x) = v(y) \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Choice process data will have an ABS representation if and only if ≻^{ABS} and ~^{ABS} can be represented by a utility function u
- A useful lemma:
 - P, I binary relations on (finite X), I symmetric
 - $PI = P \cup I$
 - There exists a $v: X \to \mathbb{R}$ that represents *PI*

$$\begin{array}{rcl} x P y & \to & v(x) > v(y) \\ x I y & \to & y(x) = v(y) \end{array}$$

• If and only if P and I satisfy Only Weak Cycles

$$x_1 P I x_2, \ldots, x_{n-1} P I x_n P I x_1$$

then there is no k such that $x_k P x_{k+1}$

Theorem 1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem Choice process data admits an ABS representation if and only if \succ^{ABS} and \sim^{ABS} satisfy Only Weak Cycles

Outline

1 Introduction

2 Theory Alternative Based Search Reservation Based Search

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reservation-Based

• ABS silent on when people stop searching

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ABS silent on when people stop searching
- Consider a refinement: Reservation-based search (RBS)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ABS silent on when people stop searching
- Consider a refinement: Reservation-based search (RBS)
 - DM has a reservation utility level

- ABS silent on when people stop searching
- Consider a refinement: Reservation-based search (RBS)
 - DM has a reservation utility level
 - Stops searching if and only finds an option with utility above this level

- ABS silent on when people stop searching
- Consider a refinement: Reservation-based search (RBS)
 - DM has a reservation utility level
 - Stops searching if and only finds an option with utility above this level
- Equivalent to Simon's [1955] concept of satisficing

- ABS silent on when people stop searching
- Consider a refinement: Reservation-based search (RBS)
 - DM has a reservation utility level
 - Stops searching if and only finds an option with utility above this level
- Equivalent to Simon's [1955] concept of satisficing
- Also optimal stopping rule for fixed search costs and no learning
• Choice process data admits an **RBS representation** if we can find

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Choice process data admits an **RBS representation** if we can find
 - An ABS representation (*u*, *S*)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Choice process data admits an **RBS representation** if we can find
 - An ABS representation (u, S)
 - A reservation level ρ

- Choice process data admits an **RBS representation** if we can find
 - An ABS representation (*u*, *S*)
 - A reservation level ρ
- Such that search stops if and only if an above reservation object is found

$$\begin{array}{rcl} \text{if } u(x) &< & \rho \; \forall \; x \in S_A(t) / A \; \text{then} \; S_A(s) \supset S_A(t) \; \text{for some} \; s > t \\ \text{if } u(x) &\leq & \rho \; \text{some} \; x \in S_A(t) / A \; \text{then} \; S_A(s) = S_A(t) \; \text{for} \; \forall \; s > t \end{array}$$

- Choice process data admits an **RBS representation** if we can find
 - An ABS representation (*u*, *S*)
 - A reservation level ρ
- Such that search stops if and only if an above reservation object is found

$$\begin{array}{rcl} \text{if } u(x) &< & \rho \; \forall \; x \in S_A(t) / A \; \text{then} \; S_A(s) \supset S_A(t) \; \text{for some} \; s > t \\ \text{if } u(x) &\leq & \rho \; \text{some} \; x \in S_A(t) / A \; \text{then} \; S_A(s) = S_A(t) \; \text{for} \; \forall \; s > t \end{array}$$

• Note: Implies complete search of sets comprising only of below-reservation objects

• Final choice can now contain revealed preference information

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Final choice can now contain revealed preference information
 - If final choice is below-reservation utility

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Final choice can now contain revealed preference information
 - If final choice is below-reservation utility
- How do we know if an object is below reservation?

- Final choice can now contain revealed preference information
 - If final choice is below-reservation utility
- How do we know if an object is below reservation?
- If they are **non-terminal**: Search continues after that object has been chosen

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

• Directly Non-Terminal: $x \in X^N$ such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

• Directly Non-Terminal: $x \in X^N$ such that

• $x \in C_A(t)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Directly Non-Terminal: $x \in X^N$ such that

•
$$x \in C_A(t)$$

• $C_A(t) \neq C_A(t+s)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Directly Non-Terminal: $x \in X^N$ such that
 - $x \in C_A(t)$
 - $C_A(t) \neq C_A(t+s)$
- Indirectly Non Terminal: $x \in X^{I}$

- Directly Non-Terminal: $x \in X^N$ such that
 - x ∈ C_A(t)
 C_A(t) ≠ C_A(t+s)
- Indirectly Non Terminal: $x \in X^{l}$

•
$$y \in X^N$$

- Directly Non-Terminal: $x \in X^N$ such that
 - $x \in C_A(t)$
 - $C_A(t) \neq C_A(t+s)$
- Indirectly Non Terminal: $x \in X^{I}$
 - $y \in X^N$
 - $x, y \in A$ and $y \in \lim_{t \to \infty} C_A(t)$

- Directly Non-Terminal: $x \in X^N$ such that
 - $x \in C_A(t)$
 - $C_A(t) \neq C_A(t+s)$
- Indirectly Non Terminal: $x \in X^{I}$
 - $y \in X^N$
 - $x, y \in A$ and $y \in \lim_{t \to \infty} C_A(t)$
- Let $X^{IN} = X^I \cup X^N$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 If one of x of y is in X^{IN} and x is finally chosen from some set A then, x ≻^L y

- If one of x of y is in X^{IN} and x is finally chosen from some set A then, x ≻^L y
 - If x is is in X^{IN}, then A must have been fully searched, and so x must be preferred to y

- If one of x of y is in X^{IN} and x is finally chosen from some set A then, x ≻^L y
 - If x is is in X^{IN}, then A must have been fully searched, and so x must be preferred to y
 - If y is in X^{IN}, then either y is below reservation level, in which case the set is fully searched, or x is above reservation utility

- If one of x of y is in X^{IN} and x is finally chosen from some set A then, x ≻^L y
 - If x is is in X^{IN}, then A must have been fully searched, and so x must be preferred to y
 - If y is in X^{IN}, then either y is below reservation level, in which case the set is fully searched, or x is above reservation utility

• Let
$$\succ^{RBS} = \succ^{L} \cup \succ^{ABS}$$

Theorem 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem Choice process data admits an RBS representation if and only if \succ^{RBS} and \sim^{ABS} satisfy Only Weak Cycles

Outline

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

1 Introduction

2 Theory

3 Experiment

Mistakes Eliciting Choice Process Data Testing Alternative-Based Search Satisficing Search Order

(ロ)、(型)、(E)、(E)、 E) の(の)

• We now introduce an experiment designed to test ABS and RBS models

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- We now introduce an experiment designed to test ABS and RBS models
- 1 Design an environment in which choice mistakes are obvious

- We now introduce an experiment designed to test ABS and RBS models
- 1 Design an environment in which choice mistakes are obvious
 - 'Full information' ranking of alternatives clear

- We now introduce an experiment designed to test ABS and RBS models
- 1 Design an environment in which choice mistakes are obvious
 - 'Full information' ranking of alternatives clear
 - Show that mistakes occur in standard choice task

- We now introduce an experiment designed to test ABS and RBS models
- 1 Design an environment in which choice mistakes are obvious
 - 'Full information' ranking of alternatives clear
 - Show that mistakes occur in standard choice task
- 2 Use a new procedure to elicit choice process data

- We now introduce an experiment designed to test ABS and RBS models
- 1 Design an environment in which choice mistakes are obvious
 - 'Full information' ranking of alternatives clear
 - Show that mistakes occur in standard choice task
- 2 Use a new procedure to elicit choice process data
 - Test ABS

- We now introduce an experiment designed to test ABS and RBS models
- 1 Design an environment in which choice mistakes are obvious
 - 'Full information' ranking of alternatives clear
 - Show that mistakes occur in standard choice task
- 2 Use a new procedure to elicit choice process data
 - Test ABS
 - Test RBS

- We now introduce an experiment designed to test ABS and RBS models
- 1 Design an environment in which choice mistakes are obvious
 - 'Full information' ranking of alternatives clear
 - Show that mistakes occur in standard choice task
- 2 Use a new procedure to elicit choice process data
 - Test ABS
 - Test RBS
 - Estimate reservation levels

Outline

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

1 Introduction

2 Theory

3 Experiment

Mistakes Eliciting Choice Process Data Testing Alternative-Based Search Satisficing Search Order

Experimental Environment

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Experiment 1; pure choice experiment

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Experiment 1; pure choice experiment
- Subjects choose between 'sums'

four plus eight minus four

- Experiment 1; pure choice experiment
- Subjects choose between 'sums'

four plus eight minus four

• Value of option is the value of the sum

- Experiment 1; pure choice experiment
- Subjects choose between 'sums'

four plus eight minus four

- Value of option is the value of the sum
- 'Full information' ranking obvious, but uncovering value takes effort

- Experiment 1; pure choice experiment
- Subjects choose between 'sums'

four plus eight minus four

- Value of option is the value of the sum
- 'Full information' ranking obvious, but uncovering value takes effort
- 6 treatments
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Experiment 1; pure choice experiment
- Subjects choose between 'sums'

four plus eight minus four

- Value of option is the value of the sum
- 'Full information' ranking obvious, but uncovering value takes effort
- 6 treatments
 - 2 x complexity (3 and 7 operations)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Experiment 1; pure choice experiment
- Subjects choose between 'sums'

four plus eight minus four

- Value of option is the value of the sum
- 'Full information' ranking obvious, but uncovering value takes effort
- 6 treatments
 - 2 x complexity (3 and 7 operations)
 - 3 x choice set size (10, 20 and 40 options)

Choice and Mistakes

Round	Current selection:
2 of 30	four plus eight minus four
Choose o	ne:
0	Zero
0	three plus five minus seven
0	four plus two plus zero
0	four plus three minus six
R	four plus eight minus four
Ő 🗆	three minus three plus one
0	five plus one minus one
0	eight plus two minus five
0	three plus six minus five
0	four minus two minus one
0	five plus five minus one

Finished

Results

Failure rates (%) (22 subjects, 657 choices)

	Complexity		
Set Size	3	7	
10	7	24	
20	22	56	
40	29	65	

Results Average Loss (\$)

	Complexity		
Set Size	3	7	
10	0.41	1.69	
20	1.10	4.00	
40	2.30	7.12	

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Take-Home from Experiment 1

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• In this environment, people clearly make mistakes

Take-Home from Experiment 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- In this environment, people clearly make mistakes
- Choice does not imply revealed preference

Take-Home from Experiment 1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- In this environment, people clearly make mistakes
- Choice does not imply revealed preference
- Can behavior be explained by ABS and RBS model?

Outline

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

1 Introduction

2 Theory

3 Experiment

Mistakes Eliciting Choice Process Data Testing Alternative-Based Search Satisficing Search Order

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1 Allow subjects to select any alternative at any time

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1 Allow subjects to select any alternative at any time

• Can change selection as often as they like

1 Allow subjects to select any alternative at any time

- Can change selection as often as they like
- 2 Choice will be recorded at a random time between 0 and 120 seconds unknown to subject

- 1 Allow subjects to select any alternative at any time
 - Can change selection as often as they like
- 2 Choice will be recorded at a random time between 0 and 120 seconds unknown to subject
 - Incentivizes subjects to always keep selected current best alternative

- 1 Allow subjects to select any alternative at any time
 - Can change selection as often as they like
- 2 Choice will be recorded at a random time between 0 and 120 seconds unknown to subject
 - Incentivizes subjects to always keep selected current best alternative
 - Treat the sequence of selections as choice process data

- 1 Allow subjects to select any alternative at any time
 - Can change selection as often as they like
- 2 Choice will be recorded at a random time between 0 and 120 seconds unknown to subject
 - Incentivizes subjects to always keep selected current best alternative
 - Treat the sequence of selections as choice process data
- 3 Round can end in two ways

- 1 Allow subjects to select any alternative at any time
 - Can change selection as often as they like
- 2 Choice will be recorded at a random time between 0 and 120 seconds unknown to subject
 - Incentivizes subjects to always keep selected current best alternative
 - Treat the sequence of selections as choice process data
- 3 Round can end in two ways
 - After 120 seconds has elapsed

- 1 Allow subjects to select any alternative at any time
 - Can change selection as often as they like
- 2 Choice will be recorded at a random time between 0 and 120 seconds unknown to subject
 - Incentivizes subjects to always keep selected current best alternative
 - Treat the sequence of selections as choice process data
- 3 Round can end in two ways
 - After 120 seconds has elapsed
 - When subject presses the 'finish' button

- 1 Allow subjects to select any alternative at any time
 - Can change selection as often as they like
- 2 Choice will be recorded at a random time between 0 and 120 seconds unknown to subject
 - Incentivizes subjects to always keep selected current best alternative
 - Treat the sequence of selections as choice process data
- 3 Round can end in two ways
 - After 120 seconds has elapsed
 - When subject presses the 'finish' button
 - We discard any rounds in which subjects do not press 'finish'

Stage 1: Selection

Round	Current selection:	
2 of 30	four plus eight minus four	
Choose one:		
0	zero	
0	three plus five minus seven	
0	four plus two plus zero	
0	four plus three minus six	
R	four plus eight minus four	
ů	three minus three plus one	
0	five plus one minus one	
0	eight plus two minus five	
0	three plus six minus five	
0	four minus two minus one	
0	five plus five minus one	

Finished

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Stage 2: Choice Recorded

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Do We Get Richer Data from Choice Process Methodology?

978 Rounds, 76 Subjects

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Outline

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

1 Introduction

2 Theory

3 Experiment

Mistakes Eliciting Choice Process Data Testing Alternative-Based Search Satisficing Search Order

 Reminder: Choice process data has ABS representation if *≻^{ABS}* is *consistent*

- Reminder: Choice process data has ABS representation if \succ^{ABS} is consistent
- Implies subjects must always switch to higher-valued objects (Condition 1)

- Reminder: Choice process data has ABS representation if \succ^{ABS} is consistent
- Implies subjects must always switch to higher-valued objects (Condition 1)
- Calculate Houtman-Maks index for Condition 1

- Reminder: Choice process data has ABS representation if \succ^{ABS} is consistent
- Implies subjects must always switch to higher-valued objects (Condition 1)
- Calculate Houtman-Maks index for Condition 1
 - Largest subset of choice data that is consistent with condition

Houtman-Maks Measure for ABS

Traditional vs ABS Revealed Preference

ABS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outline

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

1 Introduction

2 Theory

3 Experiment

Mistakes Eliciting Choice Process Data Testing Alternative-Based Search Satisficing Search Order

Satisficing Behavior a la Simon [1955]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Estimating Reservation Levels

• Choice process data allows observation of subjects

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Choice process data allows observation of subjects

• Stopping search

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Choice process data allows observation of subjects

- Stopping search
- Continuing to search

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

· Choice process data allows observation of subjects

- Stopping search
- Continuing to search
- Allows us to

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

· Choice process data allows observation of subjects

- Stopping search
- Continuing to search
- Allows us to
 - Test satisficing model

Estimating Reservation Levels

· Choice process data allows observation of subjects

- Stopping search
- Continuing to search
- Allows us to
 - Test satisficing model
 - Estimate reservation levels
▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

· Choice process data allows observation of subjects

- Stopping search
- Continuing to search
- Allows us to
 - Test satisficing model
 - Estimate reservation levels
- Assume that reservation level is observed with some error

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• Choice process data allows observation of subjects

- Stopping search
- Continuing to search
- Allows us to
 - Test satisficing model
 - Estimate reservation levels
- Assume that reservation level is observed with some error
- Can estimate reservation levels for each treatment using maximum likelihood

Estimated Reservation Levels

	Complexity		
Set Size	3	7	
10	9.54	6.35	
20	10.76	8.94	
40	14.91	10.16	

HM Indices for Estimated Reservation Levels

	Complexity		
Set Size	3	7	
10	0.91	0.83	
20	0.83	0.77	
40	0.84	0.78	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reservation-based search is optimal for a utility maximizing agent with

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Reservation-based search is optimal for a utility maximizing agent with
 - Fixed per-unit search costs

- Reservation-based search is optimal for a utility maximizing agent with
 - Fixed per-unit search costs
 - Assumes value of object drawn from a fixed distribution

- Reservation-based search is optimal for a utility maximizing agent with
 - Fixed per-unit search costs
 - Assumes value of object drawn from a fixed distribution
- Optimal reservation levels

- Reservation-based search is optimal for a utility maximizing agent with
 - Fixed per-unit search costs
 - Assumes value of object drawn from a fixed distribution
- Optimal reservation levels
 - Fall with search costs

- Reservation-based search is optimal for a utility maximizing agent with
 - Fixed per-unit search costs
 - Assumes value of object drawn from a fixed distribution
- Optimal reservation levels
 - Fall with search costs
 - Unchanged with size of choice sets

- Reservation-based search is optimal for a utility maximizing agent with
 - Fixed per-unit search costs
 - Assumes value of object drawn from a fixed distribution
- Optimal reservation levels
 - Fall with search costs
 - Unchanged with size of choice sets
- Our subjects

- Reservation-based search is optimal for a utility maximizing agent with
 - Fixed per-unit search costs
 - Assumes value of object drawn from a fixed distribution
- Optimal reservation levels
 - Fall with search costs
 - Unchanged with size of choice sets
- Our subjects
 - · Respond optimally to increased complexity

- Reservation-based search is optimal for a utility maximizing agent with
 - Fixed per-unit search costs
 - Assumes value of object drawn from a fixed distribution
- Optimal reservation levels
 - Fall with search costs
 - Unchanged with size of choice sets
- Our subjects
 - Respond optimally to increased complexity
 - Search too hard in large choice sets relative to small ones

Question 1: Does Choice Process Elicitation Change Behavior?

Failure Rate					
		Complexity			
Set Size		3	7		
10	Choice Process	11	47		
	Normal Choice	7	24		
20	Choice Process	27	59		
	Normal Choice	22	56		
40	Choice Process	38	81		
	Normal Choice	29	65		

Question 1: Does Choice Process Elicitation Change Behavior?

enserver server el com

ini*

Question 2: Can Data be Described by a 'Reservation Stopping Time'?

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - の��

Outline

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

1 Introduction

2 Theory

3 Experiment

Mistakes Eliciting Choice Process Data Testing Alternative-Based Search Satisficing Search Order

• Choice process data also makes search order visible

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Choice process data also makes search order visible
- Want to test how search order is affected by

- Choice process data also makes search order visible
- Want to test how search order is affected by
 - Screen position

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Choice process data also makes search order visible
- Want to test how search order is affected by
 - Screen position
 - Complexity

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Choice process data also makes search order visible
- Want to test how search order is affected by
 - Screen position
 - Complexity
- Ran a new treatment in which complexity varies within choice round

Search Order

• In aggregate, subjects search

- In aggregate, subjects search
 - From the top of the list to the bottom of the list

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- In aggregate, subjects search
 - From the top of the list to the bottom of the list
 - · From simple objects to more complicated objects

- In aggregate, subjects search
 - From the top of the list to the bottom of the list
 - · From simple objects to more complicated objects
- We can also identify different search types

- In aggregate, subjects search
 - From the top of the list to the bottom of the list
 - From simple objects to more complicated objects
- We can also identify different search types
 - Top-Bottom (TB) searchers

- In aggregate, subjects search
 - From the top of the list to the bottom of the list
 - From simple objects to more complicated objects
- We can also identify different search types
 - Top-Bottom (TB) searchers
 - Simple-Complex (SC) searchers

Search Types

<□ > < @ > < E > < E > E のQ @

Search Types				
	TB Search			
	Yes	No		
SC Search Yes	7	4		
No	7	2		

Search Types Predict Choice - Example 1

Finished

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Search Types Predict Choice - Example 2

Finished

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• In Example 1, pure simple-complex searchers find best option more than pure top-bottom searchers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- In Example 1, pure simple-complex searchers find best option more than pure top-bottom searchers
 - 100% vs 66% of the time

- In Example 1, pure simple-complex searchers find best option more than pure top-bottom searchers
 - 100% vs 66% of the time
- In Example 2, pure top-bottom searchers find best option more than pure simple-complex searchers

- In Example 1, pure simple-complex searchers find best option more than pure top-bottom searchers
 - 100% vs 66% of the time
- In Example 2, pure top-bottom searchers find best option more than pure simple-complex searchers
 - 80% vs 66% of the time

- In Example 1, pure simple-complex searchers find best option more than pure top-bottom searchers
 - 100% vs 66% of the time
- In Example 2, pure top-bottom searchers find best option more than pure simple-complex searchers
 - 80% vs 66% of the time
- Differences have low significance due to small sample sizes
What Next?

• Standard choice objects

What Next?

- Standard choice objects
 - e.g. lotteries

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Standard choice objects
 - e.g. lotteries
- Different decision making types

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Standard choice objects
 - e.g. lotteries
- Different decision making types
 - e.g. effect of aging

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Standard choice objects
 - e.g. lotteries
- Different decision making types
 - e.g. effect of aging
- Real applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Standard choice objects
 - e.g. lotteries
- Different decision making types
 - e.g. effect of aging
- Real applications
 - e.g. choice of retirement portfolio

- Standard choice objects
 - e.g. lotteries
- Different decision making types
 - e.g. effect of aging
- Real applications
 - e.g. choice of retirement portfolio
- Level k reasoning