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� Key innovation: Enriching the data set in theory and practices

� �Choice process�data: Records how subjects�choices change
with consideration time

� Corresponding experimental design
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� Theoretical results

� Characterize a method of search: Alternative-Based
� Characterize a stopping rule: Reservation-Based

� We do not explicitly justify these models as �rational�

� Describe a plausible class of search and choice models that
may be applicable in a wide range of situations

� Related to Simon�s [1955] satis�cing model - and similar in
spirit

� Axioms provide test of whether model is appropriate
� Environment may change behavior within this model class
� In fact, reservation strategy is optimal under certain
assumptions
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� Always chooses the best alternative of those searched
� May not search the entire choice set
� �Standard model�of information search

� Stigler [1960]
� McCall [1970]
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A De�nition of Choice Process

De�nition
A Choice Process Data Set (X ,C ) comprises of:

� �nite set X
� choice function C : X ! Z

such that C (A) 2 ZA 8 A 2 X

� CA(t): choice made from set A after contemplation time t
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� DM is equipped with a utility function

u : X ! R

� and a search correspondence

S : X ! Z

with SA(t) � SA(t + s)
� Such that the DM always chooses best option of those
searched

CA(t) = arg max
x2SA(t)

u(x)
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� Choosing x and y at the same time reveals indi¤erence
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Characterizing ABS

� Choice process data will have an ABS representation if and
only if �ABS and �ABS can be represented by a utility
function u

� A useful lemma:

� P, I binary relations on (�nite X ), I symmetric
� PI = P [ I
� There exists a v : X ! R that represents PI

xPy ! v(x) > v(y)

xIy ! y(x) = v(y)

� If and only if P and I satisfy Only Weak Cycles

x1PIx2, ..., xn�1PIxnPIx1

then there is no k such that xkPxk+1
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Theorem 1

Theorem
Choice process data admits an ABS representation if and only if
�ABS and �ABS satisfy Only Weak Cycles
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� ABS silent on when people stop searching

� Consider a re�nement: Reservation-based search (RBS)

� DM has a reservation utility level
� Stops searching if and only �nds an option with utility above
this level

� Equivalent to Simon�s [1955] concept of satis�cing
� Also optimal stopping rule for �xed search costs and no
learning
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� Choice process data admits an RBS representation if we can
�nd

� An ABS representation (u,S)
� A reservation level ρ

� Such that search stops if and only if an above reservation
object is found

if u(x) < ρ 8 x 2 SA(t)/A then SA(s) � SA(t) for some s > t
if u(x) � ρ some x 2 SA(t)/A then SA(s) = SA(t) for 8 s > t

� Note: Implies complete search of sets comprising only of
below-reservation objects
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� If they are non-terminal: Search continues after that object
has been chosen
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� If one of x of y is in X IN and x is �nally chosen from some
set A then, x �L y

� If x is is in X IN , then A must have been fully searched, and so
x must be preferred to y

� If y is in X IN , then either y is below reservation level, in which
case the set is fully searched, or x is above reservation utility

� Let �RBS=�L [ �ABS
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Theorem 2

Theorem
Choice process data admits an RBS representation if and only if
�RBS and �ABS satisfy Only Weak Cycles
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Experiment

� We now introduce an experiment designed to test ABS and
RBS models

1 Design an environment in which choice mistakes are obvious

� �Full information�ranking of alternatives clear
� Show that mistakes occur in standard choice task

2 Use a new procedure to elicit choice process data

� Test ABS
� Test RBS
� Estimate reservation levels
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Experimental Environment

� Experiment 1; pure choice experiment

� Subjects choose between �sums�

four plus eight minus four

� Value of option is the value of the sum
� �Full information�ranking obvious, but uncovering value takes
e¤ort

� 6 treatments

� 2 x complexity (3 and 7 operations)
� 3 x choice set size (10, 20 and 40 options)
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Choice and Mistakes



Results
Failure rates (%) (22 subjects, 657 choices)

Set Size 3 7

22 56

29 65

Complexity

10

20

40

7 24



Results
Average Loss ($)

Set Size 3 7

4.00

40 2.30 7.12

1.10

Complexity

10 0.41 1.69

20



Take-Home from Experiment 1

� In this environment, people clearly make mistakes

� Choice does not imply revealed preference
� Can behavior be explained by ABS and RBS model?
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Eliciting Choice Process Data

1 Allow subjects to select any alternative at any time

� Can change selection as often as they like

2 Choice will be recorded at a random time between 0 and 120
seconds unknown to subject

� Incentivizes subjects to always keep selected current best
alternative

� Treat the sequence of selections as choice process data

3 Round can end in two ways

� After 120 seconds has elapsed
� When subject presses the ��nish�button
� We discard any rounds in which subjects do not press ��nish�
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Stage 1: Selection



Stage 2: Choice Recorded



Do We Get Richer Data from Choice Process
Methodology?

978 Rounds, 76 Subjects

10 Options, Complexity 3 20 Options, Complexity 3 40 Options, Complexity 3
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Testing ABS

� Reminder: Choice process data has ABS representation if
�ABS is consistent

� Implies subjects must always switch to higher-valued objects
(Condition 1)

� Calculate Houtman-Maks index for Condition 1

� Largest subset of choice data that is consistent with condition
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Houtman-Maks Measure for ABS
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Traditional vs ABS Revealed Preference
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Satis�cing Behavior a la Simon [1955]



Estimating Reservation Levels

� Choice process data allows observation of subjects

� Stopping search
� Continuing to search

� Allows us to

� Test satis�cing model
� Estimate reservation levels

� Assume that reservation level is observed with some error
� Can estimate reservation levels for each treatment using
maximum likelihood
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Estimated Reservation Levels

Set Size 3 7
10 9.54 6.35
20 10.76 8.94
40 14.91 10.16

Complexity



HM Indices for Estimated Reservation Levels

Set Size 3 7
10 0.91 0.83
20 0.83 0.77
40 0.84 0.78

Complexity



Reservation Based Search and Optimality

� Reservation-based search is optimal for a utility maximizing
agent with

� Fixed per-unit search costs
� Assumes value of object drawn from a �xed distribution

� Optimal reservation levels

� Fall with search costs
� Unchanged with size of choice sets

� Our subjects

� Respond optimally to increased complexity
� Search too hard in large choice sets relative to small ones
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Question 1: Does Choice Process Elicitation Change
Behavior?

Set Size 3 7
Choice Process 11 47
Normal Choice 7 24
Choice Process 27 59
Normal Choice 22 56
Choice Process 38 81
Normal Choice 29 65

Failure Rate
Complexity

10

20

40



Question 1: Does Choice Process Elicitation Change
Behavior?



Question 2: Can Data be Described by a �Reservation
Stopping Time�?
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Search Order

� Choice process data also makes search order visible

� Want to test how search order is a¤ected by

� Screen position
� Complexity

� Ran a new treatment in which complexity varies within choice
round
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Search Order

� In aggregate, subjects search

� From the top of the list to the bottom of the list
� From simple objects to more complicated objects

� We can also identify di¤erent search types

� Top-Bottom (TB) searchers
� Simple-Complex (SC) searchers
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Search Types

Yes No
SC Search Yes 7 4

No 7 2

Search Types
TB Search



Search Types Predict Choice - Example 1



Search Types Predict Choice - Example 2



Search Types Predict Choice

� In Example 1, pure simple-complex searchers �nd best option
more than pure top-bottom searchers

� 100% vs 66% of the time

� In Example 2, pure top-bottom searchers �nd best option
more than pure simple-complex searchers

� 80% vs 66% of the time

� Di¤erences have low signi�cance due to small sample sizes
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� Di¤erent decision making types

� e.g. e¤ect of aging

� Real applications

� e.g. choice of retirement portfolio

� Level k reasoning
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