Emotional Realities and Economic Modeling: Some First Principles

Professor Andrew Caplin, NYU
The Center for Emotional Economics, University of Mainz

$$
\text { June 28-29, } 2010
$$

Introduction

- Four lectures and one seminar
- Lecture 1: Anxiety and Information
- Lecture 2: Economic Theory and Psychological Data
- Seminar: Search, Choice, and Revealed Preference
- Lecture 3: Dopamine and Reward Prediction Error
- Lecture 4: Emotional Economics: Can Theory and Measurement Co-Evolve?
- Mark Dean and John Leahy long-time collaborators in this research.
- Also Marina Agranov, Sen Geng, Paul Glimcher, Daniel Martin, Robb Rutledge, and Chloe Tergiman.
- Methodological as much as substantive focus

Introduction

- Behavioral economics starts with "paradoxes"
- If psychology systematically important for choices, on main road
- If not, why bother?
- Goal: model psychological factors and systematic impact on contingent behaviors
- Why not ask? Because don't want know!

PEU

- Motivational rewards separate in time from physical rewards important to decisions. Feelings of living with uncertainty include
- Anticipation of future pleasures
- Anxiety and dread
- Love of suspense
- Curiosity
- For one aware of these feelings, it is reasonable to take them into account.
- Curiosity and drive to learn
- Boosting esteem of loved ones
- Market relevance?
- Is "Equity Premium" due to living with uncertainty?

PEU

- To model, change domain
- From objective prizes to subjective
- PEU of CL is general EU with psychological prizes.
- Includes production function for relevant inner states.
- Substitution axiom as reasonable as ever
- General feature is time inconsistency
- Pay to heighten savoring
- Worked examples collapse time for simplicity

PEU

- To collapase time, add belief over final state to the prize space,

$$
Z=\{(p, \theta) \mid 0 \leq p \leq 1, \theta=A, B\},
$$

where $p \in[0,1]$ is the probability of state A and θ is the outcome that eventuates.

- Example is $(0.5, A)$ a belief that states A and B are equally likely ($p=0.5$), and an outcome in which A in fact occurs $(\theta=A)$.
- The substitution axiom is applied to preferences on X, the space of lotteries over these "belief-state" prizes.
- Conclude that there exists $u: X \rightarrow \mathbb{R}$ such that, given any two elements $H, J \in X$,

$$
H \succsim J \text { if and only if } E^{H}(u) \geq E^{J}(u)
$$

- Generic element $F \in X$ lists K belief-outcome lotteries $\left(p_{k}^{F}, \theta_{k}^{F}\right)$ and $q_{k}^{F} \geq 0$; with $\left(p_{k}^{F}, \theta_{k}^{F}\right) \in Z$ all k and with $\sum q_{k}^{F}=1$. Write,

$$
F=\left[\left(p_{1}^{F}, \theta_{1}^{F}\right) \circ q_{1}^{F} ; . . ;\left(p_{k}^{F}, \theta_{k}^{F}\right) \circ q_{k}^{F} ; . . ;\left(p_{K}^{F}, \theta_{K}^{F}\right) \circ q_{K}^{F}\right] .
$$

PEU

- The space X is intricate. Some easy to understand such as: $[(0.5, A) \circ 0.5 ;(0.5, B) \circ 0.5]=L(0.5) \in X$.
- Let $L=\{(p, A) \circ p ;(p, B) \circ 1-p \mid 0 \leq p \leq 1\} \subset X$ be the set of such lotteries over "belief-state" prizes.
- Also interest in $L^{2} \subset X$, lotteries over L.
- To describe $H \in L^{2}$ list possible lotteries $L\left(p_{k}^{H}\right)$, and their probabilities $q_{k}^{H} \geq 0$; with $L\left(p_{k}^{H}\right) \in L$ all k and with $\sum q_{k}^{H}=1$. Write,

$$
H=\left[L\left(p_{1}^{H}\right) \circ q_{1}^{H} ; . . ; L\left(p_{k}^{H}\right) \circ q_{k}^{H} ; . . ; L\left(p_{K}^{H}\right) \circ q_{K}^{H}\right] .
$$

- Other members of X not personally feasible, such as: $[(0.5, A) \circ 0.9 ;(0.5, B) \circ 0.1] \in X$.
- May be strategically feasible
- Thought experiment preferences in the spirit of Savage

Anxiety and Information

- Medical example: A incurable degenerative disease onset 10 years from now, B not
- Prior probability that do not have is π.
- Assume best prize is good news early, worst is bad news early,
- Natural monotonicity in the case of the good outcome. Simplest case linear,

$$
u^{A N X}(p, A)=\alpha^{A N X} p+\left(1-\alpha^{A N X}\right)
$$

where $\alpha^{A N X} \in(0,1)$ gives the weight of prior beliefs relative to ultimate reality.

- Even with bad outcome assume better to have lived in hope,

$$
u^{A N X}(p, B)=\beta^{A N X} p
$$

where again $\beta^{A N X} \in(0,1)$ gives the weight of prior beliefs when ultimate reality is bad.

Anxiety and Information

- Study preferences over the signal set,

$$
S=\{s(\delta) \mid \delta \in[0,1-\pi]\} .
$$

- Quality of signal is $\delta \in[0,1-\pi]$: ex ante signal equally likely to raise or lower the probability of state A by δ.
- Post-signal belief that enters the utility function.
- With uninformative signal $s(0)$, get belief-state lottery $L(\pi) \in L$ for sure,

$$
L(\pi)=[(\pi, A) \circ \pi ;(\pi, B) \circ 1-\pi] \in L .
$$

- Signal $s(\delta)$ ends up producing a lottery over such lotteries,

$$
L(\pi+\delta) \circ \frac{1}{2} \oplus L(\pi-\delta) \circ \frac{1}{2} \in L^{2} .
$$

Anxiety and Information

- We define a single function $\left.K^{A N X}: \mid 0,1\right] \rightarrow R$ to summarize choice of signal,

$$
\begin{aligned}
K^{A N X}(p) & \equiv p u^{A N X}(p, A)+(1-p) u^{A N X}(p, B) \\
& \equiv \Delta^{A N X} p^{2}+\left(1-\Delta^{A N X}\right) p
\end{aligned}
$$

where $\Delta^{A N X}=\alpha^{A N X}-\beta^{A N X}$.

- For signals $s(\delta) \in S, s(\delta) \succsim s(\tilde{\delta})$ iff,

$$
\begin{aligned}
\frac{K^{A N X}(\pi+\delta)}{2}+\frac{K^{A N X}(\pi-\delta)}{2} & \geq \frac{K^{A N X}(\pi+\tilde{\delta})}{2}+\frac{K\left({ }^{A N X} \pi-\tilde{\delta}\right)}{2} \\
\delta^{2} \Delta^{A N X} & \geq \tilde{\delta}^{2} \Delta^{A N X}
\end{aligned}
$$

- Higher values of δ strictly improve the expected utility of the signal if and only if $\Delta^{A N X}>0$, or $\alpha^{A N X}>\beta^{A N X}$. Optimistic beliefs in the good state do more good than the harm done by pessimistic beliefs in the bad state. Hence on balance it is worthwhile learning.
- Higher values of δ leave unchanged the expected utility of the signal if and only if $\Delta^{A N X}=0$, or $\alpha^{A N X}=\beta^{A N X}$.

Anxiety and Information

- Kim Witte's proposes that a fear appeal either triggers additional danger control through prevention, or instead promotes inattention and avoidance. Perceived efficacy is the key.
- Costs of preventive measure $K>0$: lowers the probability of bad health in period 2 from b_{N} to b_{P} with utility advantage of health in period 2 of H.
- Peridod 1 experience of fear $F>0$, associated with the health threat. Prevention will be undertaken if and only if,

$$
\left(b_{N}-b_{P}\right) H+\left(F_{N}-F_{P}\right) \geq K
$$

- The "fear differential" represents the difference in the level of fear depending on whether or not the preventive act is undertaken.

Anxiety and Information

- Measure danger resulting from action P is assumed to be $b_{P} H$, the higher danger from action N is $b_{N} H$. Allow attentional multipliers, A_{P} and A_{N}, both positive,

$$
\begin{aligned}
& F_{P}=A_{P} b_{P} H ; \\
& F_{N}=A_{N} b_{N} H
\end{aligned}
$$

- Let $A_{P}(m, H)$ and $A_{N}(m, H)$ reflect attention given to a health threat of type H given a message of intensity m, conditional respectively on undertaking and on not undertaking the preventive act.
- Suppose the preventive act has a fixed proportionate impact $\lambda>0$ on the attention,

$$
A_{P}(m, H)=(1+\lambda) A_{N}(m, H)
$$

the condition for prevention to raise the level of fear is,

$$
\lambda>\frac{b_{N}-b_{P}}{b_{P}}
$$

Anxiety and Information

- Captures efficacy with natural measure $\frac{b_{N}-b_{P}}{b_{P}}$.
- With high efficacy, fear is reduced if the preventive act is undertaken, and more intense message transmission serves to expand this fear-based differential.
- With low efficacy, prevention raises fear, and intense message transmission serves only to further discourage prevention.
- Variations can create different information-action interactions.

Where Next

- Suggests a progressive agenda to health-related choices
- Genetic testing
- Psychological incentives in insurance contracts
- Certification policies for communicable diseases
- Work with Kfir Eliaz
- Personal favorites: curiosity and learning
- "Library science"

Other Applications

- Other applications of monitoring/avoidance
- How often one checks assets in relation to stock market
- Failure to plan for retirement due to stress?
- The impacts of attentional interventions
- Reminders that force issues to mind
- Similar framework for other emotions.
- Curiosity and learning
- How can one induce further search and learning due to desire to know?
- "Library science"

Empirical Advance

- To implement PEU fit psychological production function to get around "Lucas Critique"
- Standard choice data of possible value in fitting production function
- Becker and Rubinstein study demand for "fear-related" goods after various attacks
- Use of non-choice "psychological" data is challenging
- What are the relevant states? What produces them? How can they be measured?
- Data on time use?
- Eye tracking?
- Self reports on affect?
- Physiological measures and manipulations?

