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I Motivation

This Lecture introduces the basic dynamic general equilibrium
model of a closed economy which is at the heart of modern
macroeconomics

→ Main reference: Wickens, Chapter 2, Sections 2.1-2.4

Goal: we will analyze how to optimally allocate output between
consumption and investment (ie capital accumulation) or,
alternatively, between ‘consumption today’and ‘consumption
tomorrow’
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I Motivation

In this lecture we will isolate a few core aspects. Many important things
will be missing. For example:

there will be no government, no market structure (in particular: no
financial markets), no money (such that all variables are in real, not
in nominal terms)

there will be no uncertainty and no sources of persistence

the labour supply will be fixed and capital can be installed without
adjustment costs

there will be no population growth and no technical progress

3 / 47



Motivation Basic model ingredients Golden rule solution Optimal solution Annex

I Motivation

Why do we start with such a seemingly unrealistic and simplistic
macroeconomic model?

There is a good scientific tradition to start out from simple,
well-understood structures

Complexity can always be added, but this needs to be done in a
disciplined way

Otherwise we would have to rely immediately on numerical methods
which are routinely used for large-scale macroeconomic models

But such methods will only be illuminating if the core of a model is
suffi ciently simple such that it can be ‘understood’

Subsequent lectures will cover extensions and add additional features
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I Motivation

The basic model of the centralized economy, notwithstanding its simplicity, has
been very influential over decades

→ Interpretations of the basic model:

Frank Ramsey (1927) introduced a similar version to study taxation
issues. Hence, the model is often called the Ramsey model

The model can be interpreted as a social planning model in which
decisions are taken by the central planner, taking as given individual
preferences

The model gives rise to a representative agent model, in the sense that
all economic agents are identical (and households and firms have the
same objectives)

Since there exists, in fact, only a single individual, the model describes a
Robinson Crusoe economy

The model is the basis of neoclassical growth theory (Solow, 1956,
Cass, 1965, Koopmans, 1967)
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II Basic model ingredients
Notation

Consider a closed economy with a constant population N

In a representative period t, we consider the following aggregate
variables (using capital letters):
Yt output
Ct consumption
Kt predetermined level of capital available for production
It gross investment undertaken within the period
St savings

Alternatively, consider these variables in per capita form (using lower
case letters), ie output per capita is given by

yt =
Yt
N

Similarly:

ct =
Ct
N
, kt =

Kt
N
, it =

It
N
, st =

St
N
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II Basic model ingredients
Key equations

To capture choices between ‘consumption today’and ‘consumption tomorrow’
in a closed economy consider 3 basic equations (per capita form)
1) Resource constraint (national income identity):

yt = ct + it , (1)

where we use that savings are equal to investment, ie

st = yt − ct = it

2) Capital stock dynamics

∆kt+1︸ ︷︷ ︸
kt+1−kt

= it − δkt , (2)

saying that ∆kt+1(ie net investment) results from gross investment (it ) minus
depreciation (where we assume that a constant proportion δ ∈ (0, 1) of the
existing capital stock depreciates in period t)
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II Basic model ingredients
Key equations

3) Production function
yt = f (kt ) (3)

Idea: The ‘neoclassical’production function f is such that an increase in k
increases output, but at a diminishing rate.
Let k > 0. Then:

f (k) > 0, f ′(k) > 0, f ′′(k) < 0

Moreover:
lim
k→0

f ′(k)→ ∞, lim
k→∞

f ′(k)→ 0

These are the so-called ‘Inada-conditions’. What do they say?

at the origin there are infinite output gains to increasing k

these gains decline as k becomes larger

they eventually disappear if k becomes arbitrarily large
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II Basic model ingredients
Key equations

Comment: Production function (aggregate vs. per capita output)

Notice that
yt = f (kt )

is in per capita form

The aggregate production function is given by

Yt = F (Kt ,N).

In neoclassical tradition, F has constant returns to scale, ie for any
proportionate variation λ of both inputs the function F satisfies

F (λKt ,λN) = λF (Kt ,N) = λYt

Hence, assuming λ = 1
N , per capita output satisfies

yt =
Yt
N
= F (kt , 1) ≡ f (kt )

‘Notice’: in some textbooks (eg. Wickens) you find the alternative
notation for per capita output

F (kt , 1) ≡ F (kt )
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II Basic model ingredients
Key equations

We can combine eqns (1)-(3) and eliminate yt and it such that the
resource constraint simplifies to

f (kt ) = ct + ∆kt+1 + δkt

Since ∆kt+1 = kt+1 − kt , this equation acts like a dynamic constraint on
the economy

Equivalently, to see how this equation restricts the feasible choices of
consumption over time, write it as

ct = f (kt )− kt+1 + (1− δ)kt (4)
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II Basic model ingredients
Key equations

Interpretation:

Eqn (4), ie
ct = f (kt )− kt+1 + (1− δ)kt

can be read as follows:
→ Consider an initial period t = 0 with a given (ie predetermined) value
k0 (which fixes output f (k0) in period t = 0)
→ Assume there exists some rule or some regularity which tells us for the
given value of k0 how to determine the consumption level c0.This will
implicitly determine k1.
→ If we use the same rule again in t = 1 we find c1, and, implicitly, k2
→ Continuing this recursive logic for t = 2, 3, ..,T , we can derive the
entire sequence of c and k into the infinite future (ie T → ∞)

Notice that eqn (4) is non-linear because of the term f (kt )
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II Basic model ingredients
Possible choices for consumption: overview

Given the just derived dynamic constraint (4), ie

ct = f (kt )− kt+1 + (1− δ)kt

we need some criterion or objective in order to determine optimal choices of
consumption

An extreme choice would be entirely myopic, ie for a given value k0 the
highest possible level of c0 in period t = 0 amounts to

cmyopic0 = f (k0) + (1− δ)k0

Yet, this choice would imply k1 = 0, ie it is not sustainable (in fact, it
would imply zero output and zero consumption in all future periods!)
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II Basic model ingredients
Possible choices for consumption: overview

A more reasonable criterion is to impose that consumption levels should
be sustainable, ie consumption should be maximized in each period

We will consider two alternatives: the so-called golden rule solution and
an optimal solution

The key difference between the two solution concepts is that under the
optimal solution future consumption will be discounted, while the golden
rule ignores discounting
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III Golden rule solution

The golden rule solution is derived from a long-term objective:
→ it maximizes the (constant) amount of per capita consumption in each
period
→ by doing so, it treats members of different generation alike (‘golden
rule’)

Hence, going back to eqn (4), ie

ct = f (kt )− kt+1 + (1− δ)kt

we consider a long-run (or ‘steady-state’) situation in which all per capita
variables are constant (in particular kt = kt+1 = k), leading to

c = f (k)− δk (5)

Eqn (5) implies that net investment will be zero, ie
the only investment undertaken is such that it replaces depreciated
capital, facilitating a constant capital stock over time
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III Golden rule solution

Given the steady-state resource constraint (5), ie

c = f (k)− δk ,

how should one optimally choose c ?

→ To find the golden rule solution we solve the maximization problem

max
k

f (k)− δk

The golden rule capital stock kGR is implicitly characterized by the
first-order condition

dc
dk
= f ′(kGR )− δ = 0,

and the second-order condition, evaluated at kGR ,

d2c
dk2

= f ′′(kGR ) < 0

ensures that kGR is a maximum (and not a minimum)
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III Golden rule solution

Uniqueness:
Given the assumptions on f , the optimum kGR which solves

f ′(kGR ) = δ (6)

is unique and the associated unique consumption level cGR is given by

cGR = f (kGR )− δkGR (7)

Interpretation of the golden rule solution:

Eqn (6) says that steady-state per capita consumption will be maximized
if the marginal product of k equals the depreciation rate δ

Below the level kGR a marginal increase in k increases c ,
since the marginal gain in output (ie f ′(k)) exceeds the output cost of
replacing depreciated capital

Above the level kGR a marginal increase in k would decrease c ,
since the marginal gain in output (ie f ′(k)) is smaller than the output
cost of replacing depreciated capital
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III Golden rule solution
Comparative statics

Let us use the golden rule solution to introduce the notion of comparative
statics:

Idea: how do long-run (steady-state) solutions of endogenous variables
change if an exogenous parameter changes?

Typically we can sign these changes, by using the information embodied
in the functional forms that are used

Particular example:
→ Assume the rate δ at which capital depreciates increases...
→ ...How do kGR and cGR react to the exogenous change in δ ?
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III Golden rule solution
Comparative statics

Particular comparative statics example: increase in δ

Recall that the first-order optimality condition

f ′(kGR ) = δ

establishes only an implicit dependence of kGR on δ, ie we cannot directly
differentiate kGR with respect to δ

Yet, since this optimality condition will be satisfied for any exogenous
value δ, we can write it as an identity

f ′(kGR (δ))− δ ≡ 0 (8)

Differentiating (8) w.r.t. δ (where we use the chain rule) yields

f ′′(kGR ) ·
dkGR
dδ
− 1 ≡ 0,

implying
dkGR
dδ

=
1

f ′′(kGR )
< 0 (9)

→ an increase in δ makes the accumulation of capital more costly, leading to a
decline in kGR
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III Golden rule solution
Comparative statics

What about the reaction of cGR to a change in δ?

To respect the implicit dependence of kGR on δ, express (7) as

cGR = f (kGR (δ))− δkGR (δ)

Differentiating cGR with respect to δ gives:

dcGR
dδ

=
d [f (kGR (δ))− δkGR (δ)]

dδ

=
[
f ′(kGR )− δ

]︸ ︷︷ ︸
=0

dkGR
dδ
− kGR (δ)

= −kGR (δ) < 0

→ an increase in δ leads also to a decline in cGR
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III Golden rule solution
Comparative statics

Comment:

To derive comparative statics results from implicit relationships like

f ′(kGR ) = δ

there exist alternative techniques

In particular, if one totally differentiates the relationship at the
equilibrium one obtains

f ′′(kGR ) · dk = dδ,

which can be rearranged to confirm (9), ie

dkGR
dδ

=
1

f ′′(kGR )
< 0.
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III Golden rule solution
What is missing?

Lecture 1 argued that modern macroeconomics attempts to base the
analysis on micro-founded welfare criteria, consistent with optimizing
behaviour of the representative consumer

The golden rule analysis carefully incorporates the dynamic constraint
relating to capital stock dynamics...

...but it is silent on whether there exists an individual welfare measure
that would generate the golden rule solution
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III Golden rule solution
What is missing?

In particular, the golden rule analysis pretends that individuals value
consumption today and consumption tomorrow in the same way

But this is not a satisfactory assumption, given the observed impatience
in decisions of consumers

This aspect is captured by the so-called optimal solution (meaning that
the optimality criterion corresponds to a micro-founded welfare objective
which incorporates impatience)
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IV Optimal solution
Objective

Let the representative period be denoted by t

Assume there exists in the initial period t = 0 a predetermined per capita
capital stock k0
Let V0 denote the present value of current and future utility, as given by:

V0 =
∞

∑
t=0

βtU(c t ), (10)

where the instantaneous utility Ut = U(c t ) satisfies U
′(c t ) > 0 and

U ′′(c t ) < 0, ie within any period additional consumption increases utility
but at a diminishing rate

The objective V0 is additively separable which makes it easy to compare
utility between periods

Future utility is discounted by the constant factor β which satisfies
0 < β < 1

Alternatively, we can define the corresponding discount rate θ > 0, with:

β =
1

1+ θ
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IV Optimal solution
Objective

The goal pursued by the optimal solution is to choose current and future
consumption such that the objective (10), ie

V0 =
∞

∑
t=0

βtU(c t ),

will be maximized subject to the above established dynamic constraint
(4), ie

ct = f (kt )− kt+1 + (1− δ)kt

We will solve this dynamic optimization problem by using the Lagrange
multiplier technique
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IV Optimal solution
Solution based on Lagrange multipliers

→ Consider the objective L which incorporates the resource constraint (4)
→ In order to maximize (10) s.t. (4) we optimize, equivalently,

L =
∞

∑
t=0
{βtU(ct ) + λt [f (kt )− ct − kt+1 + (1− δ)kt ]}

over the choice variables {ct , kt+1, and λt ; ∀t > 0}
→ λt is the Lagrange multiplier t periods ahead, measuring the shadow value
of an additional unit of period t income (in terms of utility of period 0)

First-order optimality conditions (‘FOCs’, interior) w.r.t. ct , kt ,λt :
∂L
∂ct

= βtU ′(ct )− λt = 0 t > 0 (11)

∂L
∂kt

= λt [f ′(kt ) + (1− δ)]− λt−1 = 0 t > 0 (12)

∂L
∂λt

= f (kt )− ct − kt+1 + (1− δ)kt = 0 t > 0 (13)

Transversality condition: lim
t→∞

βt · U ′(c t )︸ ︷︷ ︸
λt

· kt+1 = 0 (14)
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IV Optimal solution
Solution based on Lagrange multipliers

Comment: How to read the just derived equations (11)-(14)?

These are necessary conditions for optimality

The suffi cient conditions for a maximum are satisfied, given our
assumptions on functional forms

Notice: The concept of intertemporal optimality applies to sequences of
variables, ie the equations form a system of difference equations
characterizing the behaviour of the equilibrium over time

Crucial for the exact time paths of variables consistent with such system:
initial and terminal conditions
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IV Optimal solution
Solution based on Lagrange multipliers

Comment: Initial condition

By assumption, the economy starts to operate in t = 0, taken as given
the predetermined level of the per capita capital stock k0
→ k is the single predetermined (state) variable of the system

In period t = 0, the per capita consumption level c0 can be freely chosen
→ c is the single forwardlooking (control) variable w/o initial condition

These features will become relevant when we discuss stability issues below
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IV Optimal solution
Solution based on Lagrange multipliers

Comment: Terminal condition

The transversality condition (14), ie

lim
t→∞

βt · U ′(c t )︸ ︷︷ ︸
λt

· kt+1 = 0,

closes the system by backward induction from the (distant) future

To see how this can be made operational, consider first some large and
finite value of t, ie a distant period somewhere far out in the future...
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IV Optimal solution
Solution based on Lagrange multipliers

Comment: Terminal condition

...For any finite value of t, the term

βt · U ′(ct ) · kt+1 = λt · kt+1

describes the present value of the utility that could be obtained if kt+1 (ie
the capital stock for the next period resulting from investment decisions
in t) will be consumed at t rather than being left for production for t + 1

If this particular value of t marks the terminal period it cannot be
optimal, not to consume everything in the terminal period

Infinite horizon analogy: There exists no terminal period, but as t → ∞,
it cannot be optimal to postpone consumption forever, ie

lim
t→∞

λtkt+1 = 0,

as specified by (14).
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IV Optimal solution
Solution based on Lagrange multipliers

Simplification of the FOCs:

Let us reconsider the FOCs (11) and (12), ie

βtU ′(ct )− λt = 0 t > 0
λt [f ′(kt ) + (1− δ)]− λt−1 = 0 t > 0

We can obtain the Lagrange multiplier from the first eqn and substitute
for λt and λt−1, respectively, in the second eqn, leading to

βtU ′(ct )[f ′(kt ) + (1− δ)] = βt−1U ′(ct−1) t > 0

Equivalently, after dividing by βt−1 and updating of all terms by one
period, we can rewrite this eqn as

βU ′(ct+1)[f
′(kt+1) + (1− δ)] = U ′(ct ), t > 0 (15)

which is the so-called consumption Euler equation
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IV Optimal solution
What do we get?

2 key equations:

Recall from above that via eqn (13) the optimization preserved the
dynamic resource constraint (4)

In sum, the (consolidated) intertemporal equilibrium consists of the
consumption Euler equation and the resource constraint, ie we have
∀t > 0 :

U ′(ct ) = βU ′(ct+1)[f
′(kt+1) + (1− δ)] (16)

ct = f (kt )− kt+1 + (1− δ)kt (17)

→ We have reduced the dynamics to a non-linear two-dimensional
dynamic system in c and k with one initial condition (k0) and one
terminal condition, as given by the transversality condition (14)

Before we analyze the system (16)-(17), we will give some more
interpretation to the consumption Euler equation
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IV Optimal solution
What do we get?

Interpretation of the consumption Euler equation:

The consumption Euler equation (16), ie

βU ′(ct+1)[f
′(kt+1) + (1− δ)] = U ′(ct ), t > 0

is the fundamental dynamic equation in intertemporal optimization
problems in which consumers actively decide about how to choose
between ‘consumption today’and ‘consumption tomorrow’

In eqn (16), ‘today’corresponds to t = 0. Since the optimization holds
∀t > 0, the recursive nature of the FOCs implies that ‘tomorrow’covers
not only t = 1, but all subsequent future periods, ie t = 2, 3, ...T ...etc.
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IV Optimal solution
What do we get?

The consumption Euler equation

βU ′(ct+1)[f
′(kt+1) + (1− δ)] = U ′(ct )

can be seen as an intertemporal arbitrage condition, saying that at the
optimum the representative consumer must be indifferent between
consuming a marginal unit of c , yielding extra utility

U ′(ct ),

or, alternatively, investing this unit and consuming the return one period
later, yielding extra utility

βU ′(c t+1)[f
′(kt+1) + (1− δ)]

The discount factor β ensures that consumption today and tomorrow will
be comparable in terms of utility
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IV Optimal solution
Long-run (steady-state) features of the optimal solution

Let us go back to the pair of equilibrium eqns (16) and (17), ie

U ′(ct ) = βU ′(ct+1)[f
′(kt+1) + (1− δ)]

ct = f (kt )− kt+1 + (1− δ)kt

Long-run (‘steady-state’) equilibria exhibit constant variables

From (16), the optimal long-run (per capita) levels k∗ and c∗ satisfy

U ′(c∗) = βU ′(c∗)[f ′(k∗) + (1− δ)],

implying

f ′(k∗) =
1
β
− 1+ δ = δ+ θ (18)

From (17):
c∗ = f (k∗)− δk∗ (19)
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IV Optimal solution
Long-run (steady-state) features of the optimal solution

→ Steady states of the optimal solution satisfy (18) and (19), ie

f ′(k∗) = δ+ θ

c∗ = f (k∗)− δk∗

Eqns (18) and (19) can be solved sequentially for k∗ and c∗

Given the assumptions on f , there exists a unique steady state

Interpretation of the (steady-state) optimal solution:

The optimal solution has k∗ < kGR , since δ+ θ > δ

Moreover, c∗ < cGR , since c∗ does not maximize f (k)− δk

These findings reflect the role of θ : because of impatience the
representative consumer does not reach the higher long-run consumption
level cGR
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IV Optimal solution
Dynamics of the optimal solution

→ Stability of the steady state?

Recall from above that dynamics are governed by eqns (16) and (17), ie

U ′(ct ) = βU ′(ct+1)[f
′(kt+1) + (1− δ)]

ct = f (kt )− kt+1 + (1− δ)kt ,

ie a non-linear two-dimensional dynamic system in c and k with one initial
condition (k0) and one terminal condition (ie the TV-condition (14))

It can be shown that the dynamics are stable in a particular sense, ie the
system is (locally) saddlepath-stable
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IV Optimal solution
Dynamics of the optimal solution

Saddlepath-stability:

Saddlepath-stability means that for any value k0 close to the long-run
value k∗ there exists a unique value c0 which
i) satisfies all optimality conditions and
ii) sets in motion sequences {ct , kt+1}t=∞

t=0 that ultimately converge
against the long-run values c∗ and k∗

To calculate analytically the saddlepath requires some knowledge of
matrix algebra...

...but the saddlepath-stable behaviour can be illustrated with a phase
diagram which summarizes the dynamic forces of a linearized version of
eqns (16) and (17)
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IV Optimal solution
Dynamics of the optimal solution

Consider eqn (16), which displays non-linear dynamics in c , ie

U ′(ct ) = βU ′(ct+1)[f
′(kt+1) + (1− δ)]

To obtain locally linear dynamics in c , approximate U ′(c t+1), using a
first-order Taylor expansion around the point ct , such that

U ′(ct+1) ' U ′(ct )+U ′′(ct ) · ∆ct+1︸ ︷︷ ︸
ct+1−ct

⇐⇒ U ′(ct+1)
U ′(ct )

' 1+ U
′′(ct )
U ′(ct )

·∆ct+1

Use this approximation in eqn (16) to get

1+
U ′′(ct )
U ′(ct )

· ∆ct+1 =
1

β[f ′(kt+1) + (1− δ)]

∆ct+1 = − U
′(ct )

U ′′(ct )︸ ︷︷ ︸
>0

·
[
1− 1

β[f ′(kt+1) + (1− δ)]

]
(20)
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IV Optimal solution
Dynamics of the optimal solution

The phase diagram will be organized around eqns (17) and (20), ie

∆kt+1 = f (kt )− δkt − ct

∆ct+1 = − U
′(ct )

U ′′(ct )
·
[
1− 1

β[f ′(kt+1) + (1− δ)]

]
Notice that if ct = c∗ and kt = k∗ then ∆kt+1 = ∆ct+1 = 0

Dynamic implication of eqn (17): it features no dynamics in c , only in
k such that

∆kt+1 Q 0 if ct R f (kt )− δkt

Dynamic implication of eqn (20): it features no dynamics in k , only in
c such that

∆ct+1 Q 0 if kt+1 R k∗,
These informations can be combined to represent the dynamics in ct and
kt via a phase diagram
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IV Optimal solution
Dynamics of the optimal solution

Comments on the phase diagram of the linearized dynamics in ct and kt

Arrows indicate regions of stability and instability around k∗ > 0, c∗ > 0

For any initial departure of the state variable such that k0 6= k∗ :
Saddlepath configuration, i.e. there exists a unique choice of the control
variable c0 such that the economy ‘jumps’on the saddlepath and
converges over time towards the steady state k∗, c∗

How does consumption optimally react along the saddlepath?
i) Consider a temporary negative shock to the capital stock: k0 < k∗.
→ The saddlepath is such that on impact c0 < c∗ will be optimal
→ Thus, temporarily, consumption will be smaller than c∗ such that
some output can be diverted to rebuild the capital stock
→ This flexible short-run response of consumption is optimal, since it
ensures that the long-run level c∗ remains feasible
ii) Consider a temporary positive shock to the capital stock: k0 > k∗.
→ The reverse response pattern will be optimal, ie c0 > c∗

→ Temporarily, consumption can be larger than c∗,
w/o endangering the feasibility of the long-run level c∗
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IV Optimal solution
Dynamics of the optimal solution

Comments on the phase diagram of the linearized dynamics in ct and kt

Important information not yet used: (i) k > 0, and (ii) TV-condition (14)
→ For all other choices of c0 (ie off the saddlepath), the dynamics
ultimately drift away from k∗, c∗

Such choices can be ruled out because the economy would eventually hit
either: a ‘path of rising consumption and falling capital’on which k
would become negative (but this cannot be)
or: a ‘path of falling consumption and rising capital’on which the
present value of lifetime consumption would become smaller than the
present value of lifetime income (but this cannot be optimal)

In sum, saddlepath-stability implies that the system is not only stable, but
that the dynamics towards the steady state are uniquely determined
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Annex: Interpreting the Euler equation in a 2-period set-up

Let us look once more at the consumption Euler equation:

βU ′(ct+1)[f
′(kt+1) + (1− δ)] = U ′(ct ), t > 0

The intertemporal optimality condition captured by the Euler equation
needs to be satisfied between any two periods, ∀t > 0
The reasoning can be llustrated by considering a simple two-period
analysis

The idea is to interpret the consumption Euler equation as an optimality
condition which ensures that in equilibrium the marginal rate of
substitution along an indifference curve and the marginal rate of
transformation along the intertemporal production possibility frontier
(IPPF) will be identical between any two periods
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Annex: Interpreting the Euler equation in a 2-period set-up

Utility (2-period representation):

Consider
Ṽt = U(ct ) + βU(ct+1),

ie we impose that consumption beyond period t + 1 will not be affected

To characterize implicitly combinations of ct and ct+1 which leave utility
Ṽt constant, we consider the total differential of Ṽt (with: dṼt = 0)

0 = dṼt = dUt + βdUt+1 = U
′(ct )dct + βU ′(ct+1)dct+1,

leading to
dct+1
dct

= − U ′(ct )
βU ′(ct+1)

< 0 (21)
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Annex: Interpreting the Euler equation in a 2-period set-up

The expression (21), ie

dct+1
dct

= − U ′(ct )
βU ′(ct+1)

< 0

measures the (negative) slope of indifference curves of Ṽt in
ct − ct+1−space
Since

d2ct+1
dc2t

= − U ′′(ct )
βU ′(ct+1)

> 0

indifference curves become flatter as ct increases
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Annex: Interpreting the Euler equation in a 2-period set-up

Resource constraint (2-period representation):

Consider

ct = f (kt )− kt+1 + (1− δ)kt and ct+1 = f (kt+1)− kt+2 + (1− δ)kt+1

When totally differentiating these 2 equations we impose
dkt = 0 (since kt is predetermined) and
dkt+2 = 0 (since we want the capital stock beyond t + 2 to be
unchanged),
yielding

dct = −dkt+1 and dct+1 = f ′(kt+1)dkt+1 + (1− δ)dkt+1,

or, by combining these two expressions (via elimination of dkt+1)

dct+1
dct

= −[f ′(kt+1) + (1− δ)] < 0 (22)
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Annex: Interpreting the Euler equation in a 2-period set-up

The expression (22), ie

dct+1
dct

= −[f ′(kt+1) + (1− δ)] < 0

measures the (negative) slope of the intertemporal production possibility
frontier (IPPF) in ct − ct+1−space
Using kt+1 = f (kt )− ct + (1− δ)kt , we get

d2ct+1
dc2t

= f ′′(kt+1) < 0,

ie the IPPF becomes steeper as ct increases
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Annex: Interpreting the Euler equation in a 2-period set-up

Integrated 2-period representation:

Combining (21) and (22), ie

dct+1
dct

= − U ′(ct )
βU ′(ct+1)

< 0

and
dct+1
dct

= −[f ′(kt+1) + (1− δ)] < 0

gives the consumption Euler equation

βU ′(ct+1)[f
′(kt+1) + (1− δ)] = U ′(ct )

Thus, the consumption Euler equation captures a point of optimality
where the IPPF is tangent to an indifference curve
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