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I Motivation

This lecture goes back to the observation that Walsh (chapter 2) solves
the basic MIU model with the value function approach, while we used in
Lecture 2, alternatively, the Lagrange multiplier approach

Against this background, the goal of this lecture is threefold, ie we will
1) give a brief introduction to dynamic programming and the concept of a
value function
(For details, see: L. Ljungqvist and T. Sargent, Recursive Macroeconomic
Theory, Chapter 3, MIT Press, 2nd edition, 2004)
2) consider a simple and fully tractable example economy and compare
the two solution approaches
3) confirm the optimality conditions established in chapter 2 by Walsh
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II Value function approach
Basics

Assume we want to find an infinite sequence of a control variable {ct}∞
t=0

to maximize
∞

∑
t=0

βtu(ct ) β ∈ (0, 1), (1)

subject to the dynamic constraint

ωt+1 = g (ωt , ct ), (2)

where ω denotes a state variable with ω0 given

Let the value function V (ω) express the optimal value of the above
problem for any feasible initial value. In particular, define

V (ω0) = max
{ct}∞

t=0

∞

∑
t=0

βtu(ct )

where the maximization is subject to ωt+1 = g (ωt , ct ) and ω0 given
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II Value function approach
Basics

Under the Lagrange multiplier approach we solved directly for the
infinite sequence {ct}∞

t=0

Alternatively, dynamic programming seeks to find a time-invariant
policy function h which maps the state ωt into the control variable ct .
The optimal sequence {ct}∞

t=0 will be indirectly generated by a repeated
application of the two functions

ct = h(ωt )

ωt+1 = g (ωt , ct ),

ie the policy function and the dynamic constraint, with ω0 given
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II Value function approach
Basics

Assume we knew V (ω). Of course, we cannot expect to know V (ω),
since we have not yet solved the problem, but let us proceed on faith

If we knew V (ω) then the policy function h could be computed by
solving for each feasible value of ω the problem

max
c
{u(c) + βV (ω̃)} s .t. ω̃ = g (ω, c), and ω given, (3)

exploiting the recursive nature of the original maximization problem
(and where ω̃ denotes the value of ω in the next period)

But we don’t know yet the value function V (ω)!

In other words, rather than to find the infinite sequence {ct}∞
t=0 we have

transformed the problem such that we need to find the value function
V (ω) and the policy function c = h(ω) that solve the maximization
problem
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II Value function approach
Basics

The task is to solve jointly for V (ω) and h(ω) which are linked by the
Bellman equation

V (ω) = max
c
{u(c) + βV [g (ω, c)]} (4)

The maximizer of the RHS of eqn (4) is a policy function c = h(ω) that
satisfies

V (ω) = u(h(ω)) + βV [g (ω, h(ω))] (5)

Notice that (4) or (5) are functional equations to be solved for the
pair of unknown functions V (ω) and h(ω)

6 / 37



Motivation Value function approach Example: Value function vs. Lagrange approach MIU model: value function solution

II Value function approach
Features of the solution

There exist various methods for solving the Bellman equation, depending
on the precise nature of the functions u and g

Under certain assumptions - like the concavity of u(c) and the convexity
and compactness of the set {(ωt+1,ωt ) : ωt+1 ≤ g (ωt , ct ), ct ∈ R} -
it turns out that the solution exhibits the following elements:

1) The functional equation (4) has a unique strictly concave solution V (ω)

2) This solution is approached in the limit as j → ∞ by iterations on

Vj+1(ω) = max
c
{u(c) + βVj (ω̃)} s .t. ω̃ = g (ω, c), and ω given,

starting from an initial functional guess V0(ω̃).
This convergence result leads to a solution procedure which is called value
function iteration
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II Value function approach
Features of the solution

3) There exists a unique and time invariant optimal policy of the form
ct = h(ωt ). The derivation of the policy function uses the optimality condition

u′(c) + β
∂g (ω, c)

∂c
V ′[g (ω, c)] = 0, (6)

resulting from the maximization of the RHS of (4) w.r.t. c

4) The value function V (ω) is implicitly characterized by

V ′(ω) = β
∂g (ω, h(ω))

∂ω
V ′[g (ω, h(ω))] +

{u′(h(ω)) + β
∂g (ω, h(ω))

∂h
V ′[g (ω, h(ω))]}︸ ︷︷ ︸

=0

∂h(ω)
∂ω

,

resulting from the maximization of the RHS of (5) w.r.t. ω.

Using (6), this simplifies via the envelope theorem to the expression

V ′(ω) = β
∂g (ω, h(ω))

∂ω
V ′[g (ω, h(ω))] (7)
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II Value function approach
Comment

These concepts may seem rather abstract, but they are not when used in
practice

To see the intuition behind them we will work through a particular
example

For this example we will verify that the two solution approaches (Value
function approach and Lagrange technique) lead to the same results
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III Example: Value function vs. Lagrange approach

As a particular example of equations (1) and (2), consider the
neoclassical growth framework with logarithmic preferences

∞

∑
t=0

βt ln(ct ) β ∈ (0, 1),

and Cobb-Douglas production function within the dynamic constraint

kt+1 = g (kt , ct ) = Ak
α
t − ct , A > 0, α ∈ (0, 1),

where k denotes the single state variable with k0 given

Comment:
−→ For this example, the timing is chosen to be in line with (1) and (2)
such that k simply replaces ω
−→ This implies that from the perspective of period t the variable kt is
predetermined (rather than kt−1, as assumed by Walsh in chapter 2)
−→ For simplicity, we assume δ = 1 (ie full depreciation of capital)
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III Example: Value function vs. Lagrange approach
Solution via value function iteration

Let us use
k̃ = g (k , c) = Akα − c

The Bellman equation (5) for the example at hand becomes:

V (k) = max
c
{u(c) + βV [g (k , c)]} and k given

= max
c
{ln(c) + βV [Akα − c ]} and k given (8)

The task is to solve jointly for the value function V (k) and the policy
function c = h(k) which satisfy

V (k) = u(h(k)) + βV [g (k , h(k))]

= ln(h(k)) + βV [Akα − h(k)] (9)
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III Example: Value function vs. Lagrange approach
Solution via value function iteration

To find the pair of functions V (k) and h(k) we employ the procedure of value
function iteration:

→ for a given initial guess about the value function, called V0(k), we optimize
the RHS of (8) over c , establish thereby a policy function h1(k) and insert it
into the RHS of (8) to obtain a new value function V1(k)

→ given this new function V1(k), we optimize, again, over c , to obtain a new
policy function h2(k) and a new value function V2(k)

→ we iterate on this procedure until convergence has been achieved, ie until we
have found functions h∞(k) = h(k) and V∞(k) = V (k) which satisfy (9)
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III Example: Value function vs. Lagrange approach
Solution via value function iteration

Value function iteration: Initial functional guess (j = 0)

Assume
V0(k) = 0

This guess holds for all feasible values of k , including k̃

Max of RHS of (8) over c yields (trivially!)

c = h1(k) = Ak
α and k̃ = g (k , h1(k)) = 0

Inserting the policy function h1(k) into the RHS of (8) leads to

V1(k) = ln(Ak
α︸︷︷︸

h1(k )

) + βV0 [g (k , h1(k))]︸ ︷︷ ︸
=0

= ln(A)︸ ︷︷ ︸
a1

+ α ln(k)
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III Example: Value function vs. Lagrange approach
Solution via value function iteration

Value function iteration: Second step (j = 1)

Use the just derived function V1(k),ie

V1(k) = a1 + α ln(k)

Max of RHS of (8) over c requires

∂[ln(c) + βV1 [Akα − c ]]
∂c

=
∂[ln(c) + β[a1 + α ln(Akα − c)]

∂c
= 0,

implying
1
c
= αβ

1
Akα − c ,

ie we get

c = h2(k) =
1

1+ αβ
Akα and k̃ = g (k , h2(k)) =

αβ

1+ αβ
Akα

Inserting the policy function h2(k) into the RHS of (8) leads to

V2(k) = ln(
1

1+ αβ
Akα︸ ︷︷ ︸

h2(k )

)+ β[a1+ α ln(
αβ

1+ αβ
Akα︸ ︷︷ ︸

g (k ,h2(k ))

)] = a2+(1+ αβ)α ln(k)
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III Example: Value function vs. Lagrange approach
Solution via value function iteration

Value function iteration: Third step (j = 2)

Use the just derived function V2(k) = a2 + (1+ αβ)α ln(k)

Max of RHS of (8) over c requires

∂[ln(c) + βV2 [Akα − c ]]
∂c

=
∂[ln(c) + β[a2 + (1+ αβ)α ln(Akα − c)]

∂c
= 0,

implying
1
c
= αβ[1+ αβ]

1
Akα − c ,

ie we get

c = h3(k) =
1

1+ αβ+ (αβ)2
Akα and k̃ = g (k , h3(k)) =

αβ+ (αβ)2

1+ αβ+ (αβ)2
Akα

Inserting the policy function h3(k) into the RHS of (8) leads to

V3(k) = ln(
Akα

1+ αβ+ (αβ)2︸ ︷︷ ︸
h3(k )

) + β[a2 + (1+ αβ)α ln(
αβ+ (αβ)2

1+ αβ+ (αβ)2
Akα︸ ︷︷ ︸

g (k ,h3(k ))

)]

= a3 + [1+ αβ+ (αβ)2 ]α ln(k)
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III Example: Value function vs. Lagrange approach
Solution via value function iteration

Value function iteration: Convergence (j → ∞)

Policy function: consider what we got from the iterations done so far:

h1(k) = Akα

h2(k) =
1

1+ αβ
Akα

h3(k) =
1

1+ αβ+ (αβ)2
Akα

There is a pattern behind this, ie after j = T steps we will get

hT (k) =
1

1+ αβ+ (αβ)2 + (αβ)3 + ...+ (αβ)T−1
Akα

Recall: α ∈ (0, 1), β ∈ (0, 1), implying α · β ∈ (0, 1)
Thus, the iteration process ensures that the policy function converges:

c = h∞(k) = h(k) = (1− αβ)Akα (10)

Similarly
k̃ = g (k , h∞(k)) = g (k , h(k)) = αβAkα (11)
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III Example: Value function vs. Lagrange approach
Solution via value function iteration

Value function iteration: Convergence (j → ∞)

Value function: consider what we got from the iterations done so far:

V0(k) = 0

V1(k) = a1 + α ln(k)

V2(k) = a2 + (1+ αβ)α ln(k)

V3(k) = a3 + [1+ αβ+ (αβ)2 ]α ln(k)

As concerns the terms including α ln(k), there is a pattern behind this, ie
after j = T steps we will get

VT (k) = aT + [1+ αβ+ (αβ)2 + (αβ)3 + ...+ (αβ)T−1 ]α ln(k)

Since α · β ∈ (0, 1), for j → ∞ there will be convergence, ie

V∞(k) = V (k) = a∞ +
α

1− αβ
ln(k)

What is still missing before we can fully characterize V (k)?
→ The limit term

a = a∞
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III Example: Value function vs. Lagrange approach
Solution via value function iteration

Value function iteration: Convergence (j → ∞)

To find the limit term
a = a∞

we could carefully exploit the algebra of geometric series to find a
converging pattern behind a1, a2, a3, ...aT ...

Alternatively, we can use the method of undetermined coeffi cients
Consider eqn (9), ie

V (k) = ln(h(k)) + βV [g (k , h(k))],

which will be satisfied as j → ∞. Combining the so far established limit
values we can write this eqn as

V (k) = a+
α

1− αβ
ln(k) = ln[(1− αβ)Akα︸ ︷︷ ︸

h(k )

] + β[a+
α

1− αβ
ln(αβAkα)︸ ︷︷ ︸

g (k ,h(k )

]

Within this eqn we can determine a by combining all those terms which
are not linked to α ln(k)...
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III Example: Value function vs. Lagrange approach
Solution via value function iteration

Value function iteration: Convergence (j → ∞)

...ie from

V (k) = a+
α

1− αβ
ln(k) = ln[(1− αβ)Akα︸ ︷︷ ︸

h(k )

] + β[a+
α

1− αβ
ln(αβAkα)︸ ︷︷ ︸

g (k ,h(k )

]

we can obtain (via elimination of terms linked to α ln(k))

a = ln[(1− αβ)A] + aβ+
αβ

1− αβ
ln(αβA)

such that the value of a can be determined as

a =
1

1− β

(
ln[(1− αβ)A] +

αβ

1− αβ
ln(αβA)

)
In sum, using this expression for a, the fully determined value function
V (k) is given by

V (k) =
1

1− β

(
ln[(1− αβ)A] +

αβ

1− αβ
ln(αβA)

)
︸ ︷︷ ︸

a

+
α

1− αβ
ln(k) (12)
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III Example: Value function vs. Lagrange approach
Comparison with Lagrange solution

The value function approach is one solution technique among many others

Alternatively, the problem at hand can be solved with the Lagrange
approach

The value function approach is often used to implicitly characterize
optimal solutions of problems for which no explicit solution exists

Moreover, it is a convenient tool to obtain numerical solutions

→ Since this particular example does have a closed-form solution it is
instructive to verify the relationship between the two approaches
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III Example: Value function vs. Lagrange approach
Comparison with Lagrange solution

Consider

Lt =
∞

∑
t=0

βt{ln(ct ) + λt [Akα
t − kt+1 − ct ]}

Optimization of Lt over the choice variables {ct , kt+1, λt ; ∀t > 0} leads
to a two-dimensional, non-linear system of first-order difference equations
in c and k , ie
the consumption Euler equation

1
ct
= βαAkα−1

t+1︸ ︷︷ ︸
f ′(kt+1)

1
ct+1

(13)

and the dynamic resource constraint

kt+1 = Ak
α
t − ct (14)

Moreover, the optimal sequences of variables are subject to the initial
condition k0 and the terminal condition

lim
T→∞

βT λT kT+1 = βT
1
cT
kT+1 = 0
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III Example: Value function vs. Lagrange approach
Comparison with Lagrange solution

→ To convince ourselves that the two approaches lead to equivalent outcomes
we will undertake 3 comparisons:

Comparison 1: Transitional dynamics

Comparison 2: Steady-state solution

Comparison 3: Welfare derived from steady-state consumption
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III Example: Value function vs. Lagrange approach
Comparison with Lagrange solution

Comparison 1: Transitional dynamics

Recall from the general set-up discussed above that the value function
solution is characterized by eqns of type (6) and (7)

Eqn (6), ie

u′(c) + β
∂g (k , c)

∂c
V ′[g (k , c)] = 0,

results from maximizing the RHS of the Bellman equation w.r.t. to the
control variable c . For our example, using the constraint

k̃ = g (k , c) = Akα − c ,
it is given by

1
c
= βV ′(k̃) (15)

Eqn (7), ie

V ′(k) = β
∂g (k , h(k))

∂k
V ′[g (k , h(k))]

implicitly characterizes the optimality of the solution V (k) via an
envelope condition. For our example it is given by

V ′(k) = βαAkα−1V ′(k̃) (16)
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III Example: Value function vs. Lagrange approach
Comparison with Lagrange solution

Consider the two eqns (15) and (16), ie

1
c
= βV ′(k̃)

V ′(k) = βαAkα−1V ′(k̃)

When forwarded by one period and using

1
c̃
= βV ′(˜̃k)

they can be combined to give the consumption Euler equation (13), ie

1
c
= β · αA(k̃)α−1︸ ︷︷ ︸ ·

f ′(k̃ )

1
c̃
,

In sum, the transitional dynamics of the Value function and the Lagrange
solutions are characterized by the same difference equations
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III Example: Value function vs. Lagrange approach
Comparison with Lagrange solution

Comparison 2: Long-run (steady-state) solution

The consumption Euler equation and the dynamic resource constraint
derived under the Lagrange approach, ie

1
ct
= βαAkα−1

t+1︸ ︷︷ ︸
f ′(kt+1)

1
ct+1

and kt+1 = Ak
α
t − ct

are characterized by a unique and saddlepath-stable steady state, with

k∗ = (αβA)
1
1−α

c∗ = A · (k∗)α − k∗ = A · (k∗)α · [1− (k
∗)1−α

A
] = (1− αβ) · A · (k∗)α

These steady state values are consistent with eqns (10) and (11) obtained
from the value function iteration, ie

c = h(k) = (1− αβ)Akα

k̃ = g (k , h(k)) = αβAkα,

where by concavity of kα the values k̃ and c converge against k∗ and c∗
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III Example: Value function vs. Lagrange approach
Comparison with Lagrange solution

Comparison 3: Welfare derived from steady-state consumption

Assume the economy is in steady state, ie k0 = k∗

Then, the welfare of the representative consumer will be given by

V (k∗) = max
{ct}∞

t=0

∞

∑
t=0

βt ln(ct ) = ln(c∗) ·
∞

∑
t=0

βt ,

amounting to

V (k∗) =
1

1− β
ln(c∗)

=
1

1− β
{ln[(1− αβ)A] + α ln(k∗)}

=
1

1− β
{ln[(1− αβ)A] +

α

1− α
ln(αβA)} (17)
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III Example: Value function vs. Lagrange approach
Comparison with Lagrange solution

Comparison 3: Welfare derived from steady-state consumption

Recall the value function derived above in the general expression (12), ie

V (k) =
1

1− β
{ln[(1− αβ)A] +

αβ

1− αβ
ln(αβA)}+ α

1− αβ
ln(k)

Let k = k∗ = (αβA)
1
1−α , implying

V (k∗) =
1

1− β
ln[(1− αβ)A]+ { 1

1− β
· αβ

1− αβ
+

1
1− α

· α

1− αβ
} ln(αβA)

(18)

Comparing coeffi cients between ln(αβA)-related terms, eqns (17) and
(18) will be identical if

1
1− β

· α

1− α
=

1
1− β

· αβ

1− αβ
+

1
1− α

· α

1− αβ
,

which is, indeed, the case

→ Welfare is identical under value function and Lagrange solutions
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IV The basic MIU model: value function solution

Recall from Lecture 2 that we used the Lagrange approach to derive the
intertemporal optimality conditions which characterize the basic MIU
model

By contrast, Walsh (Chapter 2) derives these conditions using the value
function approach

In view of the techniques introduced in this lecture it should be no
surprise why the two approaches generate identical results

28 / 37



Motivation Value function approach Example: Value function vs. Lagrange approach MIU model: value function solution

IV The basic MIU model: value function solution

→ Recall from Lecture 2 the main ingredients of the intertemporal
optimization problem of the representative household

Utility function to be maximized via optimal choices of ct ,mt , bt , kt :

∞

∑
t=0

βtu(c t ,mt )

Budget constraint (in per capita terms):

f (
kt−1
1+ n

)+ τt +(1− δ)
kt−1
1+ n

+
(1+ it−1)bt−1 +mt−1
(1+ n)(1+ πt )

= ct + kt +bt +mt

Maximization is subject to initial and terminal conditions:
k−1 is predetermined and lim

t→∞
βtuc ,txt = 0 x = k , b,m
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IV The basic MIU model: value function solution

To solve this problem via the value function approach it is convenient to
introduce a new state variable ωt which summarizes all resources of the
representative HH at the beginning of period t:

ωt ≡ f (
kt−1
1+ n

)+ τt +(1− δ)
kt−1
1+ n

+
(1+ it−1)bt−1 +mt−1
(1+ n)(1+ πt )

= ct + kt +bt +mt

Using this definition of ω, we can substitute out for the (old) state
variable k , ie

kt = ωt − ct − bt −mt
If one combines the last two eqns, the law of motion of the state
variable ω can be arranged to satisfy the structure

ωt+1 = g (ωt , ct , bt ,mt ), ie

ωt+1 = f (
ωt − ct − bt −mt

1+ n
) + τt+1

+(1− δ)
ωt − ct − bt −mt

1+ n
+

(1+ it )bt +mt
(1+ n)(1+ πt+1)

(19)
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IV The basic MIU model: value function solution

Using (19), the value function satisfies

V (ω) = max
c ,b,m

{u(c ,m) + βV (ω̃)} (20)

subject to

ω̃ = g (ω, c ,m, b)

= f (
ω− c − b −m

1+ n
) + τ̃ +

1− δ

1+ n
(ω− c − b −m) + (1+ i)b +m

(1+ n)(1+ π̃)

and with ω given

Notice: τ̃, π̃, and i are exogenously given for the representative HH
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IV The basic MIU model: value function solution

For suitable assumptions on functional forms (see the corresponding
discussion in Lecture 2), eqn (20) is solved by a unique value function
V (ω), with associated unique policy functions for the control variables c ,
b, and m

To characterize the behaviour of the optimal solution, let us derive the
optimality conditions
i) for the for control variables c , b, and m in line with eqn (6) and
ii) for the state variable ω in line with eqn (7)
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IV The basic MIU model: value function solution

Consider the value function (20), ie

V (ω) = max
c ,b,m

{u(c ,m) + βV (ω̃)} s.t.

ω̃ = f (
ω− c − b −m

1+ n
) + τ̃ +

1− δ

1+ n
(ω− c − b −m) + (1+ i)b +m

(1+ n)(1+ π̃)

Optimal choice of c :

uc (c ,m) + β
∂ω̃

∂c
V ′(ω̃) = 0

uc (c ,m) = β

[
1

1+ n
· [f ′(k ′) + 1− δ]

]
· V ′(ω̃) (21)

Optimal choice of b:

β
∂ω̃

∂b
V ′(ω̃) = 0

β

[
− 1
1+ n

[f ′(k ′) + 1− δ] +
1+ i

(1+ n)(1+ π̃)

]
· V ′(ω̃) = 0 (22)
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IV The basic MIU model: value function solution

Consider the value function (20), ie

V (ω) = max
c ,b,m

{u(c ,m) + βV (ω̃)} s.t.

ω̃ = f (
ω− c − b −m

1+ n
) + τ̃ +

1− δ

1+ n
(ω− c − b −m) + (1+ i)b +m

(1+ n)(1+ π̃)

Optimal choice of m:

um(c ,m) + β
∂ω̃

∂m
V ′(ω̃) = 0

um(c ,m) = β ·
[

1
1+ n

[f ′(k ′) + 1− δ]− 1
(1+ n)(1+ π̃)

]
· V ′(ω̃) (23)

Optimal choice of ω:

V ′(ω) = β
∂ω̃

∂ω
V ′(ω̃)

V ′(ω) = β

[
1

1+ n
[f ′(k ′) + 1− δ]

]
· V ′(ω̃) (24)
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→ Let us use the definition of the real interest rate

1+ r = 1+ f ′(k ′)− δ

and combine the four optimality conditions (21)-(24) to eliminate the terms
V ′(ω) and V ′(ω̃):

Combining (21) and (24), ie

uc (c ,m) = β · ( 1+ r
1+ n

) · V ′(ω̃) and V ′(ω) = β · ( 1+ r
1+ n

) · V ′(ω̃)

gives
uc (c ,m) = V ′(ω)

and, accordingly,

uc (c ,m) = β · ( 1+ r
1+ n

) · uc (c̃ , m̃) (25)

Eqn (22) implies

1+ r =
1+ i
1+ π̃

(26)
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Combining (21) and (23), ie

uc (c ,m) = β

[
1

1+ n
· [f ′(k ′) + 1− δ]

]
· V ′(ω̃)

um(c ,m) = β ·
[

1
1+ n

[f ′(k ′) + 1− δ]− 1
(1+ n)(1+ π̃)

]
· V ′(ω̃)

leads to:

um(c ,m) = β · 1+ r
1+ n

· V ′(ω̃)− β
1

(1+ n)(1+ π̃)
· V ′(ω̃)

= [1− 1
(1+ r )(1+ π̃)

] · uc (c ,m)

=
i

1+ i
uc (c ,m) (27)
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IV The basic MIU model: value function solution

Summary: Consistent with the system of intertemporal optimality conditions
derived in Lecture 2 under the Lagrange approach, eqns (25), (26), and (27)
reproduce, respectively:

Consumption Euler equation

uc (ct ,mt ) = β · (1+ rt
1+ n

) · uc (ct+1,mt+1)

Fisher equation

(1+ f ′(
kt−1
1+ n

)− δ︸ ︷︷ ︸
1+rt

) · (1+ πt+1) = 1+ it

Optimal allocation rule for real balances

um(ct ,mt ) =
it

1+ it
uc (ct ,mt )

Moreover, the resource constraint closes the system by accounting for the
dynamics of the capital stock, ie

ct + kt = f (
kt−1
1+ n

) + (1− δ)
kt−1
1+ n
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