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I Model ingredients

Features of the basic MIU Model (Walsh, Section 2.2)

flexible prices

deterministic set-up

perfect foresight

no labour supply decision, ie per capita labour supply is fixed at
nls ≡ 1
exogenous and constant population growth:
Nt = (1+ n)Nt−1, n > 0
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I Model ingredients

Objective of representative household:

max
∞

∑
t=0

βtu(ct ,mt ) β ∈ (0, 1) (1)

Properties of flow utility u(ct ,mt ) :

continuously differentiable, increasing in both arguments, and
strictly concave

(A 1): suffi cient (and mild) condition to ensure a monetary
equilibrium with mt > 0 :
(i) um(c ,m)|m=0 → ∞ ∀c > 0,
(ii) there exists some (possibly large) satiation value of m such that
um(c ,m)|m=m = 0 ∀c > 0
(→ below we consider variations of (A1))
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I Model ingredients

Technology:
Neoclassical aggregate production function with

Yt = F (Kt−1,Nt )

In period t, aggregate output Yt is a function F of two inputs:
contemporaneous labour (Nt ) and predetermined capital (Kt−1)

Function F has constant returns to scale

Per capita output (yt ≡ Yt
Nt
):

yt =
F (Kt−1,Nt )

Nt
= F (

Kt−1
Nt

, 1) ≡ f ( kt−1
1+ n

) = f (k ′t−1) with: k
′
t−1 ≡

kt−1
1+ n

(A 2): Properties of per capita output y = f (k ′):

f is continuously differentiable, fk (k ′) > 0, fkk (k ′) < 0

Inada conditions: (i) fk (k ′))|k ′=0 → ∞, (ii) fk (k ′))|k ′→∞ = 0
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I Model ingredients

Aggregate private sector budget constraint in real terms:

Yt + τtNt + (1− δ)Kt−1 +
(1+ it−1)Bt−1 +Mt−1

Pt
= Ct +Kt +

Bt +Mt
Pt

τt : Per capita lump-sum transfer

Bt−1 : Nominal amount of aggregate government bonds;
bought in period t − 1; paying out (1+ it−1)Bt−1 in period t,
it−1 > 0 : nominal interest rate on gov’t bonds, assumed to be non-negative

Mt−1 : Nominal amount of aggregate money holdings;
‘bought’in period t − 1; paying out Mt−1 in period t,
iMt−1 ≡ 0 : nominal interest rate on (outside) money is zero

Pt : aggregate price level in period t of the single economy-wide good
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I Model ingredients

Per capita private sector budget constraint in real terms:
Dividing the previous equation by Nt yields:

f (
kt−1
1+ n

) + τt + (1− δ)
kt−1
1+ n

+
(1+ it−1)bt−1 +mt−1
(1+ n)(1+ πt )

= ct + kt + bt +mt

(2)
with:

bt =
Bt
PtNt

,mt =
Mt
PtNt

inflation defined as Pt
Pt−1
≡ 1+ πt

and using:

(1+ it−1)Bt−1
PtNt

=
(1+ it−1)
(1+ n)Nt−1

Bt−1
Pt−1

Pt−1
Pt

=
(1+ it−1)bt−1
(1+ n)(1+ πt )

Mt−1
PtNt

=
1

(1+ n)Nt−1

Mt−1
Pt−1

Pt−1
Pt

=
mt−1

(1+ n)(1+ πt )

→ From now on, define the real interest rate as:

1+ rt−1 =
1+ it−1
1+ πt
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I Model ingredients

Per capita government budget constraint in real terms:

τt +
1+ rt−1
1+ n

bt−1 +
1

(1+ n)(1+ πt )
mt−1 = bt +mt (3)

Write equivalently as:

τt +
1+ rt−1
1+ n

bt−1 = bt +mt −
1

(1+ n)(1+ πt )
mt−1︸ ︷︷ ︸

Seigniorage

Simplifying assumptions:

no government consumption (gt ≡ 0) or government investment
no distortionary (regular) taxes
(→ to be removed in Part II of the Lecture)

τt adjusts endogenously to balance (3) ∀t > 0
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II Solution based on Lagrange multipliers

Characterization of competitive equilibrium requires, inter alia,
to solve an intertemporal optimization of the representative
household

To solve such problems (here: in discrete time) various techniques
exist

We solve the problem by the Lagrange multiplier approach

Later we will verify that the value function approach used by
Walsh leads to the same results

in case you find continuous time ‘easier’:
→ good treatment of MIU-model in Blanchard and Fisher (1989)!

→ Next slide: overview of maximization problem of representative
household and the first-order conditions (FOCs) of an interior optimum
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II Solution based on Lagrange multipliers

Maximize (1) s.t. budget constraint (2) over ct ,mt , bt , kt :

max
∞

∑
t=0

βt [u(ct ,mt )

+λt{f (
kt−1
1+ n

)+ τt +(1− δ)
kt−1
1+ n

+
(1+ it−1)bt−1 +mt−1
(1+ n)(1+ πt )

− ct − kt −bt −mt}]

FOCs (interior) w.r.t. ct ,mt , bt , kt (∀t > 0):
uc (c t ,mt )−λt = 0 (4)

um(c t ,mt )−λt + βλt+1
1

(1+ n)(1+ πt+1)
= 0 (5)

−λt + βλt+1
1+ it

(1+ n)(1+ πt+1)
= 0 (6)

−λt + βλt+1
fk (k ′t ) + 1− δ

1+ n
= 0 (7)

Transversality condition: lim
t→∞

βtλtxt = 0 x = k , b,m (8)

λt : shadow value of period t income (in terms of utility of period t)
βtλt : shadow value of period t income (in terms of utility of period 0)
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II Solution based on Lagrange multipliers

Elimination of λt and λt+1 in the FOCs yields:

From (6), (7): Arbitrage condition between physical capital and real
bonds (assumed to be perfect substitutes)

1+ rt = 1+ fk (k
′
t )− δ (9)

leading to the Fisher equation

1+ it = (1+ fk (k
′
t )− δ)(1+ πt+1) (10)

From (4), (6): Intertemporal consumption optimality (Euler equation)

uc (c t ,mt ) = β
1+ rt
1+ n

uc (c t+1,mt+1) (11)

From (4)-(6): Intratemporal optimal allocation between consumption
and real balances

um(c t ,mt )
uc (c t ,mt )

=
it

1+ it
(12)

where it
1+it

measures the opportunity cost of holding money
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II Solution based on Lagrange multipliers

Interpretation of (12): ‘Opportunity cost of holding money’

→ How to optimally allocate one extra euro between real balances and
consumption in period t?

in period t, 1 extra Euro makes up 1
pt
units of real balances, yielding

1
pt
um(c t ,mt ) marginal utility

since money is dominated in return by bonds, there is an opportunity cost
to this, ie one loses it

pt+1
units of period-t + 1 goods. When discounted

this amounts to a loss of it
pt+1(1+rt )

period-t goods and an associated

marginal loss of it
pt+1(1+rt )

uc (c t ,mt ) utility

→ Equating 1
pt
um(c t ,mt ) and

it
pt+1(1+rt )

uc (c t ,mt ) yields eq (12), ie

um(c t ,mt ) =
it

1+ it
uc (c t ,mt )
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II Solution based on Lagrange multipliers

Competitive equilibrium:

representative household takes all prices as given

prices settle down at values such that all markets clear and resulting
allocations are consistent with individually optimal behaviour

Implication: combination of budget constraints of the private sector and of the
government yields the resource constraint of the economy, ie combine

f (
kt−1
1+ n

) + τt + (1− δ)
kt−1
1+ n

+
(1+ it−1)bt−1 +mt−1
(1+ n)(1+ πt )

= ct + kt + bt +mt

and

τt +
1+ rt−1
1+ n

bt−1 +
1

(1+ n)(1+ πt )
mt−1 = bt +mt

to obtain the (per capita) resource constraint

f (
kt−1
1+ n

) + (1− δ)
kt−1
1+ n

= ct + kt (13)
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II Solution based on Lagrange multipliers

Comments: How to read equations (4)-(8)?

necessary conditions for optimality (and suffi cient conditions come
from A1 and A2)

concept of optimality applies to sequences of variables, ie (4)-(8)
form a system of difference equations characterizing the behaviour
of the competitive equilibrium over time

crucial for the exact time paths of variables consistent with such
system: initial and terminal conditions
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II Solution based on Lagrange multipliers

Remark 1: Initial conditions

Assumption (A 3): The economy starts to operate in t = 0, taken as
given the exogenous sequence {Nt}, the predetermined real value K−1 as
well as the nominal values M−1, B−1, i−1

→ This distinction between nominal and real initial values has implications for
the (per capita) dynamics of the system of equilibrium equations:

Capital (k) is a state variable (with predetermined initial value k−1)

Gov’t liabilities (m, b) are not state variables, since the real value of

M−1 + (1+ i−1)B−1 in terms of period-0 goods, ie
M−1+(1+i−1)B−1

P0
is not

predetermined.
Why ? the period-0 price level P0 is not predetermined, ie
P0 is determined within the competitive equilibrium, beginning in t = 0

c is not a state variable, since c−1 does not enter any of the equations

→ k is the single predetermined (state) variable
→ other variables are forwardlooking (control) variables w/o initial conditions
→ this feature becomes important below (when we discuss stability issues)
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II Solution based on Lagrange multipliers

Remark 2: Terminal conditions

The transversality condition (8) closes the system by backward
induction from the (distant) future

Intuition: consider for some future period T > 0 the terms
βT λT xT (x = k, b,m). They describe the present value of the
utility that could be obtained if the assets get consumed at T rather
than invested

If T is the terminal period it cannot be optimal, not to consume
everything at T

Infinite horizon analogy: As T → ∞, it cannot be optimal to
postpone consumption forever, ie lim

T→∞
βT λT xT = 0 x = k, b,m
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III Core steady state features

From now on, consider 3 simplifying assumptions:

I) Constant population size

n = 0, ie Nt = N, ∀t > 0

II) Zero level of equilibrium government bonds

Bt = 0, ∀t > 0
→ Why is this assumption unproblematic?

III) Constant money growth rule

Mt = (1+ θ)Mt−1, ∀t > 0, with θ ≥ θ
(in the examples analyzed below we will assume θ ≥ 0)
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III Core steady state features

Implications of III) of constant money growth, ie Mt = (1+ θ)Mt−1:

Write the law of motion of the inflation rate as

1+ πt+1 =
Pt+1
Pt

=
Mt
Pt

Pt+1
Mt+1

(1+ θ) =
mt
mt+1

(1+ θ) (14)

implying that in steady states, satisfying m > 0, we have

1+ π = 1+ θ

Similarly, write the law of motion of the nominal interest rate as

1+ it = (1+ fk (kt )− δ︸ ︷︷ ︸
1+rt

)
mt
mt+1

(1+ θ) (15)

implying that in steady states, satisfying m > 0, we have

1+ i = (1+ r)(1+ θ)
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III Core steady state features

Summary of intertemporal equilibrium conditions:
Using (14) and (15), rewrite (11), (12), and (13) as:

Euler equation:

β(1+ fk (kt )− δ︸ ︷︷ ︸
1+rt

)uc (ct+1,mt+1) = uc (ct ,mt ) (16)

Resource constraint:

ct + kt = f (kt−1) + (1− δ)kt−1 (17)

Allocation between consumption and real balances:

1
(1+ θ)(1+ rt )

uc (ct ,mt ) ·mt+1 = [uc (ct ,mt )− um(ct ,mt )] ·mt (18)
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III Core steady state features

Summary of steady state conditions:
Consider the preceding 3 equations in steady state

Euler equation:

β · (1+ r)︸ ︷︷ ︸
1+fk (k )−δ

= 1 ⇔ fk (k) =
1
β
− 1+ δ (19)

Resource constraint:
c = f (k)− δk (20)

Allocation between consumption and real balances:

β

1+ θ
uc (c ,m) ·m = [uc (c ,m)− um(c ,m)] ·m (21)
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III Core steady state features

Existence of steady state:

fk (k) =
1
β
− 1+ δ

c = f (k)− δk
β

1+ θ
uc (c ,m) ·m = [uc (c ,m)− um(c ,m)] ·m

System has a recursive structure:

1st equation determines a unique value k∗ > 0 (because of A 2)

2nd equation determines a unique value c∗(k∗) > 0

3rd equation: under mild assumptions (like A 1 and θ > θ ≈ −r),
there exists m∗(c∗, k∗) > 0, satisfying um = i

1+i uc = (1−
β
1+θ )uc

and respecting the ‘zero lower bound constraint’i > 0

Steady-state government budget constraint (‘behind the scenes’):

τ =
θ

1+ θ
m
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III Core steady state features

Robust steady state features of the MIU model
→ It supports the dichotomy between real and nominal variables in terms
of neutrality and superneutrality

fk (k) =
1
β
− 1+ δ

c = f (k)− δk
β

1+ θ
uc (c ,m) ·m = [uc (c ,m)− um(c ,m)] ·m

I) Neutrality (∆M):

The 3 equations are independent of the level of the nominal money
stock M, ie they fix the variables k, y , c , r , m in real terms, and, for
a given value of M, one obtains the price level P = M/m

π and i are independent of the level of M

a change in M leads to a proportionate change in the price level P
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III Core steady state features

Robust steady state features of the MIU model

fk (k) =
1
β
− 1+ δ

c = f (k)− δk
β

1+ θ
uc (c ,m) ·m = [uc (c ,m)− um(c ,m)] ·m

II) Superneutrality (∆θ):

k, y , c , r are independent of the growth rate (θ) of the nominal
money stock M

a change in θ affects π and i , respectively, ‘one-to-one’(using
i ≈ r∗ + π)

Moreover: since i captures the opportunity costs of holding money,
a change in θ affects m via um = i

1+i uc (whenever m > 0)
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III Core steady state features

Fragile features of the MIU model

I) Non-superneutrality during transitional dynamics

Outside the steady state (during ‘transitional dynamics’),
superneutrality is, in general, not preserved

Only under very special assumptions, like additively separable
preferences in c and m, ie

u(c ,m) = ν(c) + φ(m),

superneutrality prevails during the transitional dynamics
(to be discussed below)
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III Core steady state features

Fragile features of the MIU model

II) Steady-state multiplicity

if

um =
i

1+ i
uc = (1−

β

1+ θ
)uc

has a unique positive solution m∗ > 0, eq (21) may have a 2nd solution if
we allow for the degenerate case of m = 0

crucial in this context: structure of u(c ,m)

(famous) result by Obstfeld/Rogoff (1983):
Assume θ > 0 and consider u(c ,m) = ν(c) + φ(m).
Then, the (seemingly) strong assumption:

(i) φm(m)|m=0 → ∞, (ii) φm(m)|m→∞ = 0

is not suffi cient to rule out a 2nd steady state with m∗2 = 0
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III Core steady state features

Fragile features of the MIU model

III) Stability

(Saddle-path) Stability of 1st steady state with m∗1 > 0 cannot
always be taken for granted in view of II):
→ global stability issues under multiple steady states solutions!

→ (remote?) possibility of a ‘non-fundamental’(ie: solely
speculative) hyperinflation in a world of pure fiat money,
consistent, for example, with a constant money supply (θ = 0)
(see: Obstfeld/Rogoff, 1983)
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IV Stability of steady states

Let us take these features as a motivation to do 2 things:
→ i) understand the economic intuition behind them
→ ii) be serious about backward and forward elements of solutions of
systems of deterministic difference equations

Preview of what is to come below: 2 tractable example economies s.t.:

1) Non-negative money growth: θ > 0
2) Cobb-Douglas production function: y = kα

3) Additively separable preferences: u(c ,m) = ν(c) + φ(m)

(Standard) Example 1: ν(c) + φ(m) = log(c) + log(m)
→ to be shown: unique steady state (with m > 0) and locally (saddle-path)
stable dynamics
(Degenerate) Example 2: ν(c) + φ(m) = log(c) + 1

1−σm
1−σ, σ ∈ (0, 1)

→ to be shown: two steady states (with m1 > 0, m2 = 0), possibility of
hyperinflationary dynamics converging against m2
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IV Stability of steady states

Special case: recursive dynamics under additively separable preferences
→ from now onwards, use u(c ,m) = ν(c) + φ(m) within (16)-(18):

Euler equation:
β(1+ fk (kt )− δ︸ ︷︷ ︸

1+rt

)νc (ct+1) = νc (ct ) (22)

Resource constraint:

ct + kt = f (kt−1) + (1− δ)kt−1 (23)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Allocation between consumption and real balances:

B(ct , kt ,mt+1) ≡
1

(1+ θ)(1+ rt )
νc (ct ) ·mt+1 = [νc (ct )−φm(mt )] ·mt ≡ A(ct ,mt )

(24)

(22) and (23) form a sub-system in ct and kt (ie independent of mt )

conditional on saddlepath-stability of (22)-(23), (in-)stability of the
sequence mt around (k∗, c∗) governed by the one-dimensional difference
equation (24)
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IV Stability of steady states

Recursive dynamics under additively separable preferences

β(1+ fk (kt )− δ︸ ︷︷ ︸
1+rt

)νc (ct+1) = νc (ct )

ct + kt = f (kt−1) + (1− δ)kt−1

B(ct , kt ,mt+1) ≡
1

(1+ θ)(1+ rt )
νc (ct ) ·mt+1 = [νc (ct )−φm(mt )] ·mt ≡ A(ct ,mt )

Transversality condition: lim
t→∞

βtλtxt = 0 x = k , b,m

3 dynamic equations hold for all t > 0
→ 1st and 2nd equation have variables with index t − 1, t, and
t + 1, but we can transform them to obtain a two-dimensional
system of first-order difference equations
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IV Stability of steady states

→ Use the transformation
ct ≡ cTt−1

to replace the sub-system in ct and kt by the transformed sub-system in cTt
and kt s.t. ∀t > −1 :

β(1+ fk (kt+1)− δ︸ ︷︷ ︸
1+rt+1

)νc (cTt+1) = νc (cTt ) (25)

cTt + kt+1 = f (kt ) + (1− δ)kt (26)

notice: this transformation does not affect the sequence of events, ie the
transformed system in c and k and the initial system are equivalent

→ Moreover, dynamics of (24) around a steady state with (k∗, c∗) satisfy

B(mt+1) ≡
β

1+ θ
νc (c∗) ·mt+1 = [νc (c∗)− φm(mt )] ·mt ≡ A(mt ) (27)
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IV Stability of steady states
Notion of saddle-path stability

→ Recall from above:

k is the single (backward-looking) state variable of the dynamic
system (with predetermined initial value k−1)

c and m are two (forward-looking) control variables w/o initial
conditions

→ This feature is picked up by the notion of a saddle-path stable
solution of the system (25)-(27)

→ Idea: combine the single initial condition k−1 and two terminal
conditions (restricting cTt+T and mt+T , assuming T → ∞, and derived
from the TV-condition) to find a solution of the form (∀t ≥ −1))

kt+1 = χ(kt )

cTt = ξ1(kt ), mt = ξ2(kt )

→ In general, the functions χ and ξ1, ξ2 will be non-linear.
Approximate solutions rely on linear functions, characterizing a linearized
version of the system (25)-(27) 30 / 73
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IV Stability of steady states
Linearized dynamics

Recursive dynamics of the linearized system:
→ The system (25)-(27) is non-linear. ‘Way out’?
→ Analysis of a linearized system, obtained from a 1st-order Taylor
expansion of (25)-(27) around some steady state (k∗, c∗,m∗) :[

cTt+1 − c∗
kt+1 − k∗

]
= A ·

[
cTt − c∗
kt − k∗

]
(28)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

mt+1 −m∗ = am · (mt −m∗) (29)

A is a 2x2-matrix, with coeffi cients evaluated at the steady state, ie

A =
[
a11(k∗, c∗) a12(k∗, c∗)
a21(k∗, c∗) a22(k∗, c∗)

]
Similarly, am is a scalar, with am = am(k∗, c∗,m∗)
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IV Stability of steady states
Graphical characterization

Dynamics of the linearized system: phase diagrams
→ The dynamics of this linearized system can be solved analytically
→ Without loss of generality we will consider a graphical representation
of the stability behaviour, using phase diagrams

→ We do this for the 2 example economies, respectively, in two steps:

Step 1: Calculation of steady states values
(and check: unique vs. multiple steady states)

Step 2: Construction of phase diagrams around the steady state
with m > 0
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IV Stability of steady states
Graphical characterization: example economy 1

Example 1: θ > 0, y = kα, and ν(c) + φ(m) = log(c) + log(m)

Step I: steady state calculation

From (19), ie fk (k∗) =
1
β − 1+ δ = α(k∗)α−1 :

k∗ = (
αβ

1− β+ δβ
)

1
1−α > 0

From (20), ie: c∗ = (k∗)α − δk∗ :

c∗ = (
αβ

1− β+ δβ
)

α
1−α − δ(

αβ

1− β+ δβ
)

1
1−α > 0

From (21), ie
β

1+ θ

1
c∗
m∗︸ ︷︷ ︸

B (m)

=
1
c∗
m∗ − 1︸ ︷︷ ︸
A(m)

:

m∗ =
1+ θ

1+ θ − β
· c∗ > 0

→ unique values k∗ >, c∗ > 0, m∗ > 0
→ notice: no second steady-state solution m∗ = 0 !
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IV Stability of steady states
Graphical characterization: example economy 1

Example 1: θ > 0, y = kα, and ν(c) + φ(m) = log(c) + log(m)

Step II: Phase diagram around k∗ > 0, c∗ > 0, m∗ > 0

Step II involves in itself a 2-step procedure:
IIa) → establish (local) saddlepath-stability of the subsystem (25)-(26)
in cTt and kt around k∗ > 0, c∗ > 0
(notice: for this step the particular specifications of f (k) and
ν(c) + φ(m) do not matter)

IIb) → establish saddlepath-stability of the difference equation in mt
(27) around m∗ > 0, taken as given k∗ > 0, c∗ > 0
(notice: for this step the specification of ν(c) + φ(m) as
log(c) + log(m) matters)
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IV Stability of steady states
Graphical characterization: example economy 1

Step IIa): Phase diagram of the subsystem (25)-(26) in cTt and kt
→ we need 1st order approximate versions of eqns (25) and (26), with
‘appropriate’terms of type ∆ct+1 and ∆kt+1:

for the Euler equation (25) use

νc (cTt+1) ≈ νc (cTt ) + νcc (cTt ) · (cTt+1 − cTt )︸ ︷︷ ︸
∆cTt+1

to rewrite (25) approximately as

β(1+ fk (kt+1)− δ)[νc (cTt ) + νcc (cTt ) · ∆cTt+1︸ ︷︷ ︸
≈ νc (cTt+1)

]) ≈ νc (cTt )

⇔ ∆cTt+1 ≈ −
νc (cTt )

νcc (cTt )
· [1− 1

β(1+ fk (kt+1)− δ)
] (30)
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IV Stability of steady states
Graphical characterization: example economy 1

Step IIa): Phase diagram of the subsystem in cTt and kt

Dynamic implication of the just established eqn (30), ie

⇔ ∆cTt+1 ≈ −
νc (cTt )

νcc (cTt )
· [1− 1

β(1+ fk (kt+1)− δ)
]

notice: − νc (cTt )
νcc (cTt )

> 0

eqn features no dynamics in k, only in cT

→ if kt+1 = k∗ ⇒ ∆cTt+1 = 0 and

∆cTt+1 Q 0 if kt+1 R k∗
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IV Stability of steady states
Graphical characterization: example economy 1

Step IIa): Phase diagram of the subsystem in cTt and kt

for the resource constraint (26), no approximation needed, ie rewrite

cTt + kt+1 = f (kt ) + (1− δ)kt

as
∆kt+1 = f (kt )− δkt − cTt (31)

Dynamic implication of (31):

eqn features no dynamics in cT , only in k

→ if cTt = f (kt )− δkt ⇒ ∆kt+1 = 0 and

∆kt+1 Q 0 if cTt R f (kt )− δkt
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IV Stability of steady states
Graphical characterization: example economy 1

Step IIa): Phase diagram of the subsystem in cTt and kt

→ Combine the information contained in the two expressions

∆kt+1 Q 0 if cTt R f (kt )− δkt

∆cTt+1 Q 0 if kt+1 R k∗

to represent the dynamics in cTt and kt via a phase diagram:

Here: Figure 1 (Example 1: Dynamics in cT and k)
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IV Stability of steady states
Graphical characterization: example economy 1

Step IIa): Comments on the phase diagram of the subsystem in cTt and kt

Arrows in Figure 1 indicate regions of stability and instability around
k∗ > 0, c∗ > 0

Important information not yet used: (i) k > 0, and (ii) TV-condition (8)
For any initial departure of the state variable such that k−1 6= k∗ :
Saddle-path configuration, i.e. there exists a unique choice of the
control variable c0 = cT−1 such that the economy jumps on the saddlepath
and converges over time towards the steady state k∗, c∗

For all other choices, the dynamics ultimately drift away from k∗, c∗

Moreover, such choices can be ruled out because the economy would
eventually hit
either: a ‘path of rising consumption and falling capital’on which k
would become negative (but this cannot be)
or: a ‘path of falling consumption and rising capital’on which the
present value of lifetime consumption would become smaller than the
present value of lifetime income (but this cannot be optimal)
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IV Stability of steady states
Graphical characterization: example economy 1

Step IIb): Phase diagram of mt around m∗ > 0, taken as given
k∗ > 0, c∗ > 0

→ using ν(c) + φ(m) = log(c) + log(m), (27) becomes:

B(mt+1) ≡
β

1+ θ

1
c∗
·mt+1 =

1
c∗
mt − 1 ≡ A(mt ) (32)

⇔ mt+1 =
1+ θ

β︸ ︷︷ ︸
am>1

mt −
1+ θ

β
c∗ (33)

→ no linearization needed,ie
dynamics in mt governed by a linear first-order difference equation
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IV Stability of steady states
Graphical characterization: example economy 1

Step IIb): Phase diagram of mt around m∗ > 0, taken as given
k∗ > 0, c∗ > 0

→ to represent the dynamics of (32) in mt via a phase diagram, use

β

1+ θ

1
c∗
<
1
c∗
,

ie the slope coeffi cient of B(mt+1) is smaller than the one of A(mt ) :

Here: Figure 2 (Example 1: Dynamics in m)
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IV Stability of steady states
Graphical characterization: example economy 1

Step IIb): Comments on the phase diagram of the dynamics in mt

Arbitrary initial values of type m′0 or m
′′
0 in Figure 2 lead to unstable

dynamics, moving away from m∗.
This reflects that (33) is for arbitrary initial values an unstable difference
equation (in the backwardlooking sense).

But the backwardlooking perspective is misleading since the sequence mt
has no initial condition, ie if m0 jumps directly to the unique value m∗

dynamics are stable (and the absence of transitory dynamics is a special
case of forward-looking saddlepath-stability)

Moreover, m0 = m∗ is optimal, since:
if m′0 < m

∗, mT becomes negative for some finite horizon T (but this
cannot be) and
if m′′0 > m

∗, mt grows at the rate 1+θ
β . However, the TV-condition (8)

requires
lim
T→∞

βT · υc (c∗) ·mT = 0

and θ > 0 implies that this condition will be violated (but this cannot be)
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IV Stability of steady states
Example economy 1

Interpretation and comments:

In terms of economic insights, the particular specification of additively
separable preferences used in Example 1 illustrates that the basic MIU
model has the potential to extend superneutrality to transitory dynamics,
ie the specification supports the notion that ‘money can act as a veil’in
the strongest possible sense

In terms of its technical features, example 1 exhibits a unique steady
state with (locally) saddlepath stable dynamics, ie by combining the
restrictions from both initial and terminal conditions the dynamics of all
variables are stable and uniquely defined around this steady state

This concept is a standard one which is routinely used in macro-models
with forward-looking agents

In stochastic extensions of models of this type it implies that small
shocks (within the neighbourhood around a steady state) trigger stable
and predictable reactions of optimizing agents such that the economy
eventually returns to the starting point
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IV Stability of steady states
Example economy 1

Interpretation and comments:

In large-scale macro models (used for forecasts and policy simulations),
which, in any case, are not recursive, this configuration cannot be verified
in simple phase diagrams. Instead, these models need to be solved
numerically. Yet, the basic intuition for the possibility of
saddlepath—stable dynamics of such systems is in line with example 1

Criticism: for saddlepath-stable configurations, the role of the
‘fundamentals of the economy’(here captured by the single value k−1) is
very strong (and for many applications too strong)

Alternative view:
→ Models should allow for self-fulfilling fluctuations, driven by
non-fundamental ‘animal spirits’(Keynes).
→ With equally simple model ingredients, this can be achieved if the
dynamics implied by the system of difference equations are somewhat
different, leading to locally indeterminate (but still stable) dynamics
(and we will briefly return to this when we sketch the analytics of stability
issues below)
→ More far-reaching criticism: rational expectations assumption as
such to be modified (eg via learning) or entirely abandoned

44 / 73



Model ingredients Lagrange solution Steady state Stability Background: analytics of stability

IV Stability of steady states
Graphical characterization: example economy 2

Example 2: θ > 0, y = kα, and ν(c) + φ(m) = log(c) + 1
1−σm

1−σ, σ ∈ (0, 1)

Step I: steady state calculation

From (19), (20): values of k∗ and c∗ identical with those of example 1, ie:

k∗ = (
αβ

1− β+ δβ
)

1
1−α > 0 and c∗ = (

αβ

1− β+ δβ
)

α
1−α − δ(

αβ

1− β+ δβ
)

1
1−α > 0

From (21), ie
β

1+ θ

1
c∗
m∗︸ ︷︷ ︸

B (m)

=
1
c∗
m∗ − (m∗)1−σ︸ ︷︷ ︸

A(m)

:

m∗1 = (
1+ θ

1+ θ − β
· c∗) 1σ > 0

m∗2 = 0

→ unique positive values k∗ >, c∗ > 0, m∗1 > 0
→ but: existence of a 2nd solution m∗2 = 0 !
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IV Stability of steady states
Graphical characterization: example economy 2

Example 2: θ > 0, y = kα, and ν(c) + φ(m) = log(c) + 1
1−σm

1−σ, σ ∈ (0, 1)

Step II: Phase diagram around k∗ >, c∗ > 0, m∗1 > 0

Step II, again, involves in itself a 2-step procedure:
IIa) → identical to example 1, ie (local) saddlepath-stability of the subsystem
(25)-(26) in cTt and kt around k∗ > 0, c∗ > 0
(remember: for this step the particular specifications of f (k) and ν(c) + φ(m)
do not matter)

IIb) → saddlepath-stability of the difference equation in mt (27) around
m∗1 > 0, taken as given k

∗ > 0, c∗ > 0, vanishes since dynamics may converge
against m∗2 = 0
(notice: for this step the specification of ν(c) + φ(m) as log(c) + 1

1−σm
1−σ,

σ ∈ (0, 1) matters)
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IV Stability of steady states
Graphical characterization: example economy 2

Step IIb): Phase diagram of mt around m∗1 > 0, for given k
∗ > 0, c∗ > 0

→ Using ν(c) + φ(m) = log(c) + 1
1−σm

1−σ, (27) becomes

B(mt+1) ≡
β

1+ θ

1
c∗
·mt+1 =

1
c∗
mt − m1−σ

t︸ ︷︷ ︸
φmt (mt )·mt

≡ A(mt ) (34)

→ According to (34), dynamics governed by a non-linear first-order difference
equation in mt

→ Linearized version of (34) around m∗1 = (
1+θ
1+θ−β · c∗)

1
σ > 0 (where only the

term φmt (mt ) ·mt on the RHS of (34) requires linearization)
β

1+ θ

1
c∗
· (mt+1 −m∗1 ) = [

1
c∗
− (1− σ)(m∗1 )

−σ](mt −m∗1 )

⇔ mt+1 −m∗1 = [ σ
1+ θ

β
+ 1− σ︸ ︷︷ ︸

am>1 for ∀ σ∈(0,1)

] · (mt −m∗1 ) (35)
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IV Stability of steady states
Graphical characterization: example economy 2

Step IIb): Phase diagram of mt around m∗1 > 0, taken as given
k∗ > 0, c∗ > 0

→ represent the dynamics of the original, non-linearized equation (34)
in mt via a phase diagram:

Here: Figure 3 (Example 2: Dynamics in m)
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IV Stability of steady states
Graphical characterization: example economy 2

Step IIb): Comments on the phase diagram of the dynamics in mt

Complete (ie non-linear) configuration is much richer than the linearized
dynamics around m∗1
Again, for arbitrary initial values of m0 6= m∗1 dynamics are unstable
→ if m′′0 > m

∗
1 :

all paths to be ruled out by violations of the TV-condition (see ex. 1)

if m′0 < m
∗
1 :

→ in general, also to be ruled out: mT will become negative for large T
→ yet: for some value m′0 < m

∗ dynamics converge against m∗2 = 0
→ specifically: if the system hits m̃ it moves in the next period to m∗2 = 0
→ this requires an infinite jump in the price level (‘hyperinflation’)
→ and then the system stays at m∗2 = 0 forever
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IV Stability of steady states
Graphical characterization: example economy 2

Step IIb): Comments on the phase diagram of the dynamics in mt

Important: dynamics towards m∗2 = 0 do not violate the optimality
conditions derived from forwardlooking behaviour. Why?
→ At m̃ to be satisfied:

φm(m̃) = νc (c∗)

→ Compare this with the first-order condition:

φm(mt ) =
it

1+ it
· νc (c∗) =

1

1+ 1
it

· νc (c∗)

→ Use it = (1+ r ∗) · Pt+1Pt
− 1. Hence, for given Pt , it → ∞ as

Pet+1 → ∞ (‘rationally expected hyperinflation’), implying it
1+it
→ 1 such

that φm(m̃) = νc (c∗) can be rationalized
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IV Stability of steady states
Graphical characterization: example economy 2

Step IIb): Comments on the phase diagram of the dynamics in mt

Technically, what is the difference between the 2 examples?
→ in Example 1: lim

m→0
φ(m)→ −∞, while in Example 2: lim

m→0
φ(m) = 0

→ To rule out the possibility of hyperinflationary dynamics (ie Ex. 1),
money must be so necessary that the utility loss is suffi ciently large (ie
infinite!) if real balances go to zero

51 / 73



Model ingredients Lagrange solution Steady state Stability Background: analytics of stability

IV Stability of steady states
Example economy 2

Interpretation and comments:

In terms of its technical features, example 2 illustrates some important insights

The linearization of macroeconomic models, while often inevitable, can
come at a significant cost since the ‘global’behaviour of economies can
be very different from predictions obtained from ‘local’characterizations:
→ in our case: the possibility of hyperinflationary dynamics would not
have been captured if we had used the linear equation (34) instead of the
original non-linear one (35)

The existence of multiple steady states leads to global coordination
problems and questions of equilibrium selection

These issues are at odds with the strong uniqueness property of
saddlepath-stable solutions
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IV Stability of steady states
Example economy 2

Interpretation and comments:
In terms of economic insights, example 2 has a number of interesting and
partly controversial features:

The possibility of a purely speculative hyperinflation (where for θ > 0 real
balances mt ultimately go to zero, ie πt rises faster than θ, leading to a
complete collapse of the monetary equilibrium) is the flip side of the
complete dichotomy between the nominal and real side of the model

Neutrality and superneutrality facilitate the possibility of a self-fulfilling
and ‘de-coupled’hyperinflation which does not affect the real side of the
economy

→ How plausible is this? Why should it better be seen as a ‘degenerate’story?

The qualification as a ‘degenerate’scenario does not refer per se to the
particular functional choice of ν(c) + ϕ(m) = log(c) + 1

1−σm
1−σ

It rather refers to a well-understood fragility of the model itself

→ To rule out the hyperinflationary scenario not much is needed: as long as
the central bank stands ready to guarantee some minimal real redemption
value for money, non-fundamental hyperinflationary dynamics, by
backward-induction, can never take off 53 / 73
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IV Stability of steady states
Example economy 2

Interpretation and comments:

→ in reality, such qualifications of pure fiat money regimes exist, ie
central banks hold reserves like gold and implement their standing
operations by investing in different types of assets
→ interesting different traditions of monetary policy implementation:

US: tradition of ‘treasuries only’(outright purchases); recently
extended to various private paper facilities

Eurosystem: tradition of accepting government and private paper
as collateral; recently extended to outright purchases of (some)
gov’t paper

in either tradition: recognition of (crisis-related) lender of last
resort function of central banks to stem financial panics (via
discount window)
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:
→ Reconsider the above established linearized system (28)-(29),ie:[

cTt+1 − c∗
kt+1 − k∗

]
= A ·

[
cTt − c∗
kt − k∗

]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

mt+1 −m∗ = am · (mt −m∗) ,

→ where A =
[
a11(k∗, c∗) a12(k∗, c∗)
a21(k∗, c∗) a22(k∗, c∗)

]
is a 2x2-matrix and

am = am(k∗, c∗,m∗) is a scalar

Aim:
→ i) Derive analytically the saddlepath-stable solution of the linearized
dynamics around (k∗, c∗,m∗)
→ ii) Extend the reasoning to a general classification of stability patterns of
linear systems where A is a nxn-matrix and we have n1 predetermined and
n2 = n− n1 forwardlooking variables
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

→ The (in)stability of linearized systems of difference equations is
determined by their characteristic roots or, equivalently, their eigenvalues,
denoted by λ

→ A 3x3-system has generically 3 distinct eigenvalues (and, for
simplicity, we consider |λi | 6= 1)

→ Special constellation of (28)-(29): because of the independence of
(29), the dynamics in mt are governed by λ3 = am , while λ1 and λ2 are
linked to the 2x2-matrix A
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:
Consider first:

mt+1 −m∗ = am︸︷︷︸
λ3

· (mt −m∗)

→ The eigenvalue am induces a linear mapping such that the scalar argument
(mt −m∗) is scaled up or down over time, depending on whether |am | ≷ 1

Backwardlooking interpretation:
If |λ3 | < 1 : stability for arbitrary initial conditions mt 6= m∗

Forwardlooking interpretation (see Ex 1 and 2):
→ Since mt introduced as a forwardlooking variable w/o initial (but with
terminal) condition stability requires |λ3 | > 1
→ Why? Rewrite the eqn as

mt −m∗ =
1

λ3
(mt+1 −m∗) = (

1
λ3
)T · (mt+T −m∗),

implying mt = m∗ since the term mt+T −m∗ is bounded by the terminal
condition such that lim

T→∞
( 1λ3 )

T · (mt+T −m∗) = 0
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

Consider now: [
cTt+1 − c∗
kt+1 − k∗

]
= A ·

[
cTt − c∗
kt − k∗

]
→ Is there a counterpart to the just discussed scalar am = λ3 for the
2x2-system governed by A?

→ To simplify notation let ht+1 = A · ht with: ht ≡
[
cTt − c∗
kt − k∗

]
→ Special case: Assume

A · ht = λ · ht = ht+1,

ie the matrix A induces a linear mapping such that the vector argument ht is
scaled up or down over time, depending on whether |λ| ≷ 1
In such special case denotes:
i) the scalar λ an eigenvalue of the matrix A
ii) the vector h ≡ q an eigenvector of A, associated with the eigenvalue λ
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

→ From the eqn
A · q = λ · q

eigenvalues solve the equation

[A− λI ] · q = 0, with: I = [
1 0
0 1

]

→ For non-trivial solutions (ie q 6= 0), the matrix [A− λI ] needs to be
‘singular’(ie the inverse of [A− λI ] does not exist), leading to the so-called
characteristic equation:

|A− λI | = 0 ⇔
∣∣∣∣ a11 − λ a12

a21 a22 − λ

∣∣∣∣ = 0
Equivalently, the characteristic equation can be written as

λ2 − (a11 + a22︸ ︷︷ ︸)
Tr (A)

λ+ (a11a22 − a12a21)︸ ︷︷ ︸
Det(A)

= 0 (36)
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

→ The characteristic eqn (36) is a quadratic eqn in λ
→ There exist generically two different eigenvalues λ1 and λ2, ie

λ1,2 =
1
2
· Tr (A)± 1

2
·
√
(Tr (A))2 − 4 ·Det(A)

→ with associated eigenvectors q1 = (
µ1

q1 · µ1
) and q2 = (

µ2
q2 · µ2

)

→ since each λi generates 2 linearly dependent equations, the associated
eigenvectors have a unique direction (via q i ), but not a particular length

Some simplifying notation:
→ 2x2−Matrix Q of stacked eigenvectors:

Q = [q1 q2 ] = [
µ1 µ2

q1 · µ1 q2 · µ2
]

→ 2x2−Diagonal matrix Λ of eigenvalues:

Λ = [
λ1 0
0 λ2

]
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

→ Write the definition of eigenvalues and eigenvectors in matrix form:

A ·Q = A · [q1 q2 ] = [q1 q2 ] · [
λ1 0
0 λ2

] = Q ·Λ

→ Since Q ·Q−1 = I , rewrite the matrix A via its ‘Jordan canonical form’:

A = Q ·Λ ·Q−1,

where it is customary to order the eigenvalues in Λ by size (starting with the
smallest one in the top left corner of Λ)

→ The inverse matrix Q−1 of Q is also 2x2-matrix:

Q−1 =
1

Det(Q)
[
q2 · µ2 −µ2
−q1 · µ1 µ1

] ≡ [ q̃11 q̃12
q̃21 q̃22

]
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

→ Define a new vector zt containing linear combinations of the initial
variables with weights taken from Q−1 such that

zt = (
z1,t
z2,t

) = Q−1 · ht ,

ie
z1,t = q̃11 · h1,t + q̃12 · h2,t and z2,t = q̃21 · h1,t + q̃22 · h2,t

→ Rewrite the initial 2x2−system (28), ie

ht+1 = A · ht ,
using A = Q ·Λ ·Q−1 as

Q−1 · ht+1 = zt+1 = Λ · zt (37)

Notice: Since Λ is a diagonal matrix, eqn (37) consists of two ‘de-coupled’
first-order difference eqns, qualitatively similar to (29), ie we can write it as

z1,t+1 = λ1 · z1,t
z2,t+1 = λ2 · z2,t 62 / 73
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

→ The pair of equations

z1,t+1 = λ1 · z1,t and z2,t+1 = λ2 · z2,t (38)

describe the general solution of the 2x2−system

ht+1 = A · ht

→ Equivalently, the general solution can be written as

ht = (
h1,t
h2,t

) = (
µ1

q1 · µ1
) · λt1 + (

µ2
q2 · µ2

) · λt2 (39)

→ Using either (38) or (39), the definite solution can be obtained if one uses
the initial and terminal conditions
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:
→ Recall: one predetermined variable (k) and one forwardlooking variable (c)
→ Assume: |λ1 | < 1 and |λ2 | > 1

Notice: it can be verified that the matrix A derived from the linearized eqns
(25) and (26) generically satisfies this pattern of eigenvalues

Since |λ2 | > 1 solve the second eqn z2,t+1 = λ2 · z2,t
forward, ie rewrite it as

z2,t =
1

λ2
· z2,t+1 = (

1
λ2
)T · z2,t+T

and deduce from lim
T→∞

( 1λ2 )
T · z2,t+T = 0 the solution

z2,t = q̃21 · h1,t︸︷︷︸
cTt −c ∗

+ q̃22 · h2,t︸︷︷︸
kt−k ∗

= 0,

implying that the forwardlooking (control) variable c should be set s.t.

cTt − c∗ = −
q̃22
q̃21
· (kt − k∗) (40)
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

→ What about the dynamics in (kt − k∗) ?
→ Use the first eqn

z1,t+1 = λ1 · z1,t with: z1,t = q̃11 · h1,t + q̃12 · h2,t

→ Substitute eqn (40),ie

cTt − c∗︸ ︷︷ ︸
h1,t

= − q̃22
q̃21
· (kt − k∗)︸ ︷︷ ︸

h2,t

.

in the first eqn to obtain

[q̃12 − q̃11
q̃22
q̃21
] · (kt+1 − k∗) = λ1 · [q̃12 − q̃11

q̃22
q̃21
] · (kt − k∗),

implying for the law of motion of the state variable k :

kt+1 − k∗ = λ1 · (kt − k∗) (41)
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V Stability of steady states: analytical solution
Comments on the solution and generalizations

Solution:

→ The two eqns (40) and (41), ie

kt+1 − k∗ = λ1 · (kt − k∗)

cTt − c∗ = ct+1 − c∗ = −
q̃22
q̃21
· (kt − k∗)

are the solutions, summarizing ∀t > −1 the behaviour of the linearized versions
of (25) and (26), as captured by the matrix A, along the linear saddlepath until
convergence of kt and cTt against k∗ and c∗

→ The derivation of (40) and (41) has used that we have 1 stable and 1
unstable eigenvalue which we have matched with the single initial and the
single terminal condition
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V Stability of steady states: analytical solution
Comments on the solution and generalizations

Initializing the system at t = −1 :

→ Recall: k−1 is the single initial condition of the system (40) and (41)
→ Consider the two eqns at t = −1, ie

k0 − k∗ = λ1 · (k−1 − k∗)

cT−1 − c∗ = c0 − c∗ = −
q̃22
q̃21
· (k−1 − k∗),

implying that we managed to initialize the law of motion for kt and ct by the
single initial condition k−1
→ for all t > −1 : unique values of kt and ct determined recursively by (40)
and (41)
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Cross-equation restriction:

Equations of type (40), ie

cTt − c∗ = −
q̃22
q̃21
· (kt − k∗)

are examples of cross equation restrictions
In general, restrictions of this type, going back to Lucas (1976), are a key
feature of macro-models which incorporate forwardlooking behaviour and
are intimately linked to the so-called Lucas critique
This critique revolutionized macroeconomic analysis 40 years ago

The Lucas critique says that econometricians who want to estimate a
relationship like (40) need to be aware that coeffi cients like −q̃22/q̃21
consist not only of structural (‘deep’) parameters like α, β or δ, but also
of policy parameters (like θ)

In particular, changes in parameters of policy rules do affect such
coeffi cients, implying that policy advice based on past estimates of
such coeffi cients will be systematically wrong
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Cross-equation restriction (cont’d):

Remark: for the special system characterized by additively separable
preferences the single policy parameter θ does not enter the dynamics
governed by A, ie for this very special system the Lucas critique does not
apply

However, in general, assuming non-separable preferences with
u = u(c ,m) such that one obtains a fully integrated 3x3−system in kt , ct
and mt , the Lucas critique does apply. In other words, the coeffi cient
linking consumption and capital (and, hence, output) will be a function of
the policy parameter θ

In case policymakers announce a systematic change in their policy rule
(here: ‘change in θ’), forwardlooking agents will incorporate this in their
decisions. Policy-advice not internalizing this reaction will be misleading
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Generalization I (Large-scale deterministic linear systems):

→ Consider an economy characterized by n1 predetermined (or state)
variables with initial conditions and n2 = n− n1 forwardlooking (or control)
variables with terminal conditions

ht+1 =
[
hPt+1
hFt+1

]
= A ·

[
hPt
hFt

]
= A · ht ,

where A is a nxn−matrix, h is a nx1−vector and hP and hF are n1x1 and
n2x1−vectors of predetermined and forwardlooking variables, respectively
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Generalization I (Large-scale deterministic linear systems):

Blanchard-Kahn (1980) conditions:

If the system is to have a unique stationary equilibrium, n1 eigenvalues
of the matrix A need to satisfy |λi | < 1, i = 1, 2, .., n1, while n2
eigenvalues need to satisfy

∣∣λj ∣∣ > 1, j = n1 + 1, .., n.
If there are fewer than n2 eigenvalues with

∣∣λj ∣∣ > 1, then the system is
characterized by multiple stationary equilibria (indeterminacy)
If there are more than n2 eigenvalues with

∣∣λj ∣∣ > 1, then no solution
exists

If a unique stationary equilibrium exists, the solution takes the form:

hPt+1 = M · hPt and hFt = C · hPt
If there exist multiple stationary equilibria (indeterminacy):
→ possibility of self-fulfilling fluctuations (‘animal spirits’)
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Comment 1: Unit roots

If eigenvalues satisfy the borderline case of |λi | = 1 (‘unit root’), the
classification can be adjusted:
If the system is to have a unique equilibrium, n1 eigenvalues of the
matrix A need to satisfy |λi | ≤ 1, i = 1, 2, .., n1, while n2 eigenvalues
need to satisfy

∣∣λj ∣∣ > 1, j = n1 + 1, .., n.
Intuition: Eigenvalues satisfying |λi | = 1 create special dynamics in the
sense that the system will not return to its starting point, but neither will
it explode

Numerically, such constellation is not generic (ie the probability that we
hit such special value for ‘arbitrary’matrices A is zero)

However, many models have deliberately a theoretical design such that
unit roots do matter (eg permanent as opposed to transitory technology
or taste shocks etc)
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Comment 2: Level changes vs. percentage deviations

Typically, to make reactions between the various variables comparable,
the representative entries of hPt and h

F
t are specified as percentage

deviation of some variable from its steady state, like, eg,

hPi = k̂t =
kt − k∗
k∗

or hFj = ĉt =
ct − c∗
c∗

,

and not the absolute differences (as done above)

Variables with a hat-notation (k̂t , ĉt etc.) typically describe such
percentage deviation

This change in representation matters only at the stage when the
linearizations are done, but not afterwards
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