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Model ingredients

| Model ingredients

Features of the basic MIU Model (Walsh, Section 2.2)

@ flexible prices
@ deterministic set-up
@ perfect foresight

@ no labour supply decision, ie per capita labour supply is fixed at
Is —
n = 1

@ exogenous and constant population growth:
Ny =(1+n)N;_1,n>0

N
~
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Model ingredients

| Model ingredients

Objective of representative household:

max Z Btu(c,,m:) PBe(01) (1)

Properties of flow utility u(c,, m¢) :

@ continuously differentiable, increasing in both arguments, and
strictly concave

@ (A 1): sufficient (and mild) condition to ensure a monetary
equilibrium with m; > 0 :
(i) um(c, m)|,,_g — o Yc >0,
(i) there exists some (possibly large) satiation value of m such that
um(c, m)|,_m=0Vc>0
(— below we consider variations of (Al))



Model ingredients

| Model ingredients

Technology:
Neoclassical aggregate production function with

Ve = F(Ki-1, Nt)

@ In period t, aggregate output Y% is a function F of two inputs:
contemporaneous labour (N;) and predetermined capital (K:_1)

@ Function F has constant returns to scale

@ Per capita output (y; = %)

F(Ke-1, Ne) Ki-1 )= f (kt 1 ke—1
Nt Ne "7 “l+n

(A 2): Properties of per capita output y = f(k’):

= F( )—f(kt 1) with: k;flz

Yt =

@ f is continuously differentiable, f; (k) > 0, fi, (k') <0
@ Inada conditions: (i) fy(k"))|_q — 00, (ii) fk (k")) |/ eo = O



Model ingredients

| Model ingredients

Aggregate private sector budget constraint in real terms:

14+ i-1)Bi_1+ M;_ B+ M
(1+it-1)Br1 tl:Ct—l-Kt—l— t + M;

Yf+TtNt+(1—(5)Kt71+ Pt Pt

T; : Per capita lump-sum transfer

B;—_1 : Nominal amount of aggregate government bonds;
bought in period t — 1; paying out (1 + ir—1)B;_1 in period t,
ir—1 = 0 : nominal interest rate on gov't bonds, assumed to be non-negative

M;_1 : Nominal amount of aggregate money holdings;
‘bought’ in period t — 1; paying out M;_1 in period t,

iM, = 0: nominal interest rate on (outside) money is zero

P: : aggregate price level in period t of the single economy-wide good



Model ingredients

| Model ingredients

Per capita private sector budget constraint in real terms:
Dividing the previous equation by N yields:

ki1 ki1 (T4 ip—1)be—1 + me—q
f 1-6 = k b
()t =0 1+ n)(1+ ) Ce Kt o be + My
(2)
with:
B, M
® be=pf M = B

@ inflation defined as £ =1+ Tt

Pt*l
@ and using:
(I4i—1)Bt1 (I+i—1) Bee1Peor (T4+i—1)be1
Py Ny (4N Pey Pe (140 (14 )
M _ 1 M;i_1 Pr_q _ mi—1
PNy (1+n)Ne—qy Py Pr (1+n)(1+my)

— From now on, define the real interest rate as:
1401

Lr-1= 1+
t
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Model ingredients

| Model ingredients

Per capita government budget constraint in real terms:

1+rt_1
T4+ ———bt 1+ ——————mi_1=br+ m 3
t 1+n t—1 (1+n)(1+7‘[t) t—1 t t ()
Write equivalently as:
1+rt_1 1
T+ ——bi1=bt+mf— ———F———m;_
R T TN Y I

Seigniorage
Simplifying assumptions:
@ no government consumption (g = 0) or government investment

@ no distortionary (regular) taxes
(— to be removed in Part Il of the Lecture)

@ T adjusts endogenously to balance (3) Vt > 0



Model ingredients

Il Solution based on Lagrange multipliers

@ Characterization of competitive equilibrium requires, inter alia,
to solve an intertemporal optimization of the representative
household

@ To solve such problems (here: in discrete time) various techniques
exist

@ We solve the problem by the Lagrange multiplier approach

@ Later we will verify that the value function approach used by
Walsh leads to the same results

@ in case you find continuous time ‘easier’:
— good treatment of MIU-model in Blanchard and Fisher (1989)!

— Next slide: overview of maximization problem of representative
household and the first-order conditions (FOCs) of an interior optimum



Lagrange solution

Il Solution based on Lagrange multipliers

Maximize (1) s.t. budget constraint (2) over ct, m¢, by, k¢:

max 2 /3 ct, my)
ki1 (14i—1)br—14+msy
FOCs (mterlor) w.r.t. ¢t me, by, ke (Vt = 0):
UC(Ctr mt)—)\f =0 (4)
1
Um(Ct, mt)*)\t + ﬁ/\t—&-lm = 0 (5)
1+ _
Af+ﬁ/\t+1 (1+n)(1+7‘[:+1) - 0 (6)
fi(kl)+1-6

—Ar+ BArsa % 0 (M)
Transversality condition: Iim ﬁt)\txt =0 x=k,bm (8)

At : shadow value of period t income (in terms of utility of period t)
B A¢ : shadow value of period t income (in terms of utility of period 0)



Lagrange solution

Il Solution based on Lagrange multipliers

Elimination of A and A;11 in the FOCs yields:

@ From (6), (7): Arbitrage condition between physical capital and real
bonds (assumed to be perfect substitutes)

L+r=1+f(k)—9 (9)
leading to the Fisher equation
LTtie = (1+ fi(k) = 6) (1 + 7es1) (10)
@ From (4), (6): Intertemporal consumption optimality (Euler equation)

1+rt

muC(Ct-i—lvmtJrl) (11)

UC(Ctr mt) = ,B

@ From (4)-(6): Intratemporal optimal allocation between consumption
and real balances )
Um(Ct, mt) _ It

uc(ct,mt) 1+It

(12)

where lil} measures the opportunity cost of holding money
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Lagrange solution

Il Solution based on Lagrange multipliers

Interpretation of (12): ‘Opportunity cost of holding money’

— How to optimally allocate one extra euro between real balances and
consumption in period t?

@ in period t, 1 extra Euro makes up % units of real balances, yielding

1 . -
E”m(ctv m;) marginal utility

@ since money is dominated in return by bonds, there is an opportunity cost
to this, ie one loses pr’fﬂ units of period-t 4+ 1 goods. When discounted

this amounts to a loss of ) period-t goods and an associated

T
marginal loss of m uc(c,, my) utility

— Equating %um(ct,mt) and ¢y my) yields eq (12), ie

iy
per1(1+rt) UC(
it

1+lt uc(c,, me)

um(cy, me) =

11/73



Lagrange solution

Il Solution based on Lagrange multipliers

Competitive equilibrium:

@ representative household takes all prices as given

@ prices settle down at values such that all markets clear and resulting
allocations are consistent with individually optimal behaviour

Implication: combination of budget constraints of the private sector and of the
government yields the resource constraint of the economy, ie combine

ke—1 ke | (L4idp—1)br—1+me
S e (1+n)(1+m) Cotfat bt me
and 1+ 1
re—1
T+ b1+ my_1 =br+m
t 1+n t—1 (1“(‘/7)(1"’71}) t—1 t t
to obtain the (per capita) resource constraint
ke—1 ke—1



Lagrange solution

Il Solution based on Lagrange multipliers

Comments: How to read equations (4)-(8)7

@ necessary conditions for optimality (and sufficient conditions come
from Al and A2)

@ concept of optimality applies to sequences of variables, ie (4)-(8)
form a system of difference equations characterizing the behaviour
of the competitive equilibrium over time

@ crucial for the exact time paths of variables consistent with such
system: initial and terminal conditions



Lagrange solution

Il Solution based on Lagrange multipliers

Remark 1: Initial conditions

@ Assumption (A 3): The economy starts to operate in t = 0, taken as

given the exogenous sequence {N;}, the predetermined real value K_; as
well as the nominal values M_;, B_1, i—1

— This distinction between nominal and real initial values has implications for
the (per capita) dynamics of the system of equilibrium equations:

@ Capital (k) is a state variable (with predetermined initial value k_1)

@ Gov't liabilities (m, b) are not state variables, since the real value of
M_1+ (14 i_-1)B_1 in terms of period-0 goods, ie %?’I)B’l is not
predetermined.

Why 7 the period-0 price level Pqy is not predetermined, ie
Py is determined within the competitive equilibrium, beginning in t =0
@ c is not a state variable, since c_; does not enter any of the equations

— k is the single predetermined (state) variable
— other variables are forwardlooking (control) variables w/o initial conditions
— this feature becomes important below (when we discuss stability issues)
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Lagrange solution

Il Solution based on Lagrange multipliers

Remark 2: Terminal conditions

@ The transversality condition (8) closes the system by backward
induction from the (distant) future

@ Intuition: consider for some future period T > 0 the terms
ﬁT/\TxT (x = k, b, m). They describe the present value of the
utility that could be obtained if the assets get consumed at T rather
than invested

@ If T is the terminal period it cannot be optimal, not to consume
everything at T

@ Infinite horizon analogy: As T — oo, it cannot be optimal to
postpone consumption forever, ie Tlim [ST)\TXT =0 x=k,b,m
—00

15/73



Steady state

lI1 Core steady state features

From now on, consider 3 simplifying assumptions:

1) Constant population size
o n=0ieN =N Vt=>0
I1) Zero level of equilibrium government bonds

@ B=0,Vt>0
— Why is this assumption unproblematic?

I11) Constant money growth rule

© My = (1+60)M_1, Vt >0, with 6 >0
(in the examples analyzed below we will assume 6 > 0)

16 /73



Steady state

lI1 Core steady state features

Implications of Ill) of constant money growth, ie My = (14 6)M;_;:

@ Write the law of motion of the inflation rate as

’Dt+1 :%Pl’+l (1+9):
Py Pt My 1 mei1

m¢

14 7eq1 = (1+0) (14)

implying that in steady states, satisfying m > 0, we have
1+m71=146

@ Similarly, write the law of motion of the nominal interest rate as

me

1+ir = (14 fi(ke) = 0) (1+9) (15)
————

1+4+r

mei1

implying that in steady states, satisfying m > 0, we have
1+i=(14r(1+06)

17 /73



Steady state

lI1 Core steady state features

Summary of intertemporal equilibrium conditions:
Using (14) and (15), rewrite (11), (12), and (13) as:

Euler equation:

B(1+ fi(ke) — 8)uc(ces1, mes1) = uc(ce, my) (16)
1+4+r

Resource constraint:
Ct+kt = f(kt_1)+(1—5)kt_1 (17)

Allocation between consumption and real balances:

m%(ct' me) - mey1 = [uc(ce, me) — um(ce, me)] - me (18)

18 /73



Steady state

lI1 Core steady state features

Summary of steady state conditions:
Consider the preceding 3 equations in steady state

Euler equation:

1
B-(1+r) =1 & f(k)==—-1+9 (19)
;\/_/ ﬁ
1+f, (k)—6
Resource constraint:
c=f(k)—dk (20)
Allocation between consumption and real balances:
p uc(e,m)-m=[uc(c,m)—um(c,m)]-m (21)
146 ' ' ’

19/73



Steady state

lI1 Core steady state features

Existence of steady state:

f(k) = /13— 115
c = f(k)—0dk
uc(c,m)-m = [uc(c,m)—um(c,m)]-m

146
System has a recursive structure:
@ 1st equation determines a unique value k* > 0 (because of A 2)
@ 2nd equation determines a unique value ¢*(k*) > 0
@ 3rd equation: under mild assumptions (like A1 and 8 > 0 ~ —r),

there exists.m*(c*, k*) > 0, satisfying um :.ﬁyc =(1- 1%_9 Uc
and respecting the ‘zero lower bound constraint’ i > 0

Steady-state government budget constraint (‘behind the scenes’):

= 5
146 20/73



Steady state

lI1 Core steady state features

Robust steady state features of the MIU model
— It supports the dichotomy between real and nominal variables in terms
of neutrality and superneutrality

1

fk(k) = B—l—i—é
c = f(k)—3dk
p _
1+‘9uc(c,m)~m = |uc(c,m)—um(c,m)]-m

1) Neutrality (AM):

@ The 3 equations are independent of the /evel of the nominal money
stock M, ie they fix the variables k, y, ¢, r, m in real terms, and, for
a given value of M, one obtains the price level P = M/m

@ 7T and i are independent of the level of M
@ a change in M leads to a proportionate change in the price level P

21/73



Steady state

lI1 Core steady state features

Robust steady state features of the MIU model

flk) = [13—1+5
c = f(k)—dk
p uc(e,m)-m = J[uc(c,m)—um(c,m)] -m
1+9 ’ c 1 m ’

I1) Superneutrality (Af):

@ k,y,c,r are independent of the growth rate (6) of the nominal
money stock M

@ a change in 0 affects 7t and i, respectively, ‘one-to-one’ (using
i~ r*+m)

@ Moreover: since i captures the opportunity costs of holding money,
a change in 0 affects m via upm = i uc (whenever m > 0)



Steady state

lI1 Core steady state features

Fragile features of the MIU model

1) Non-superneutrality during transitional dynamics

@ Outside the steady state (during ‘transitional dynamics’),
superneutrality is, in general, not preserved

@ Only under very special assumptions, like additively separable
preferences in ¢ and m, ie

u(e, m) = v(e) +¢(m),

superneutrality prevails during the transitional dynamics
(to be discussed below)



Steady state

lI1 Core steady state features

Fragile features of the MIU model

I1) Steady-state multiplicity

o if
o
it

c:(l_ )Uc

Um

1+96
has a unique positive solution m* > 0, eq (21) may have a 2nd solution if
we allow for the degenerate case of m =0

@ crucial in this context: structure of u(c, m)

@ (famous) result by Obstfeld/Rogoff (1983):
Assume 6 > 0 and consider u(c, m) = v(c) + ¢(m).
Then, the (seemingly) strong assumption:

(1) @ (m)| g = 00, (i) ¢y (m)] 0o =0

is not sufficient to rule out a 2nd steady state with m3 =0

24 /73



Steady state

lI1 Core steady state features

Fragile features of the MIU model

111) Stability

@ (Saddle-path) Stability of 1st steady state with mj > 0 cannot
always be taken for granted in view of I1):
— global stability issues under multiple steady states solutions!

@ — (remote?) possibility of a ‘non-fundamental’ (ie: solely
speculative) hyperinflation in a world of pure fiat money,
consistent, for example, with a constant money supply (6 = 0)
(see: Obstfeld/Rogoff, 1983)

25/73



Stability

IV Stability of steady states

Let us take these features as a motivation to do 2 things:

— i) understand the economic intuition behind them

— i) be serious about backward and forward elements of solutions of
systems of deterministic difference equations

Preview of what is to come below: 2 tractable example economies s.t.:

@ 1) Non-negative money growth: 0>0
@ 2) Cobb-Douglas production function: y =k~
@ 3) Additively separable preferences: u(c,m) =v(c)+ ¢(m)

(Standard) Example 1: v(c) + ¢(m) = log(c) + log(m)

— to be shown: unique steady state (with m > 0) and locally (saddle-path)
stable dynamics

(Degenerate) Example 2: v(c) +¢(m) = log(c) + Z-m! 7, 0 € (0,1)
— to be shown: two steady states (with m; > 0, mp = 0), possibility of
hyperinflationary dynamics converging against my

26 /73



Stability

IV Stability of steady states

Special case: recursive dynamics under additively separable preferences
— from now onwards, use u(c, m) = v(c) + ¢(m) within (16)-(18):

Euler equation:

B(L+ fi(ke) — 6)ve(cer) = ve(er) (22)
—————
1+r
Resource constraint:
Ct+kt = f(kt_1)+ (1—5)kt_1 (23)

Allocation between consumption and real balances:
1

B(Ct, ke, mt+1) = WVC

(ct) - mes1 = [ve(cr) =@ (me)] - me = Alcr, my)
(24)
@ (22) and (23) form a sub-system in ¢; and k; (ie independent of m;)

@ conditional on saddlepath-stability of (22)-(23), (in-)stability of the
sequence m; around (k*, c*) governed by the one-dimensional difference
equation (24)

27 /73



Stability

IV Stability of steady states

Recursive dynamics under additively separable preferences

B(L+ fi(ke) = O)ve(cesr) = ve(ce)
| —
1+4r,
Ct+kt = f(ktfl) + (1 7(5)/(1’71
1
= . = - -my=A
B(ct, keompy1) 1 +9)(1+rt)VC(Ct) mep1 = [ve(er) — ¢, (me)] - me (ct,my)
Transversality condition: tlimoo,BtAtxt =0 x=kbm

@ 3 dynamic equations hold for all t > 0
— 1st and 2nd equation have variables with index t — 1, t, and
t + 1, but we can transform them to obtain a two-dimensional
system of first-order difference equations

28/73



Stability

IV Stability of steady states

— Use the transformation
_ T
Ct =G

to replace the sub-system in ¢; and k; by the transformed sub-system in ctT

and k; s.it. Vit > —1:

B(L+ fi(ker1) —O)ve(cliy) = vele]) (25)
1+rea /
of +hke1 = Flke)+(1—08)ke (26)

notice: this transformation does not affect the sequence of events, ie the
transformed system in ¢ and k and the initial system are equivalent

— Moreover, dynamics of (24) around a steady state with (k*, c*) satisfy

B(miy1) = 15_9%(6‘) cmepy = [ve(c) — ¢ (me)] - me = A(mye)  (27)

29/73



Stability

IV Stability of steady states

Notion of saddle-path stability

— Recall from above:
@ k is the single (backward-looking) state variable of the dynamic
system (with predetermined initial value k_1)
@ ¢ and m are two (forward-looking) control variables w/o initial
conditions

— This feature is picked up by the notion of a saddle-path stable
solution of the system (25)-(27)

— ldea: combine the single initial condition k_; and two terminal
conditions (restricting CL_T and m; 7, assuming T — oo, and derived
from the TV-condition) to find a solution of the form (Vt > —1))

kes1 = x(ke)

of =Gilke),  me=Golke)
— In general, the functions x and ¢y, ¢ will be non-linear.
Approximate solutions rely on linear functions, characterizing a linearized
version of the system (25)-(27) 2003



Stability

IV Stability of steady states

Linearized dynamics

Recursive dynamics of the linearized system:

— The system (25)-(27) is non-linear. ‘Way out'?

— Analysis of a linearized system, obtained from a 1st-order Taylor
expansion of (25)-(27) around some steady state (k*, c*, m*) :

T _ % T %
Cr1TC T =A | T (28)
kep1 — K ke — k
mip1 —m* = ap - (my —m") (29)

@ Ais a 2x2-matrix, with coefficients evaluated at the steady state, ie
A_ all(k*,c*) alg(k*,c*)
o azl(k*,c*) 322(/(*,6*)

@ Similarly, an, is a scalar, with ap, = ap (k*, ¢*, m*)
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Stability

IV Stability of steady states

Graphical characterization

Dynamics of the linearized system: phase diagrams

— The dynamics of this linearized system can be solved analytically

— Without loss of generality we will consider a graphical representation
of the stability behaviour, using phase diagrams

— We do this for the 2 example economies, respectively, in two steps:

@ Step 1: Calculation of steady states values
(and check: unique vs. multiple steady states)

@ Step 2: Construction of phase diagrams around the steady state
with m >0



Stability

IV Stability of steady states

Graphical characterization: example economy 1

Example 1: 0 >0, y = k%, and v(c) + ¢(m) = log(c) + log(m)
Step |: steady state calculation
From (19), ie fi(k*) = § —1+0 = a(k*)*"
«p 1
k* = =« >0
(1 - B+ (5[5)
From (20), ie: ¢* = (k*)* — 8k* :

(9}

* D‘ﬁ = _ L ﬁ
=G5 T gaap) 20

1 1
From (21), ie p —m* :C—m —1:

— S———
B(m) A(m)
“ixe-p ¢ 70

— unique values k* >,¢c* >0, m* >0
— notice: no second steady-state solution m* =0 !
33/73



Stability

IV Stability of steady states

Graphical characterization: example economy 1

Example 1: 6 >0, y = k%, and v(c) + ¢(m) = log(c) + log(m)
Step II: Phase diagram around k* >0, ¢* >0, m* >0

Step Il involves in itself a 2-step procedure:

Ila) — establish (local) saddlepath-stability of the subsystem (25)-(26)
in ¢/ and k; around k* >0, ¢* >0

(notice: for this step the particular specifications of f(k) and

v(c) + ¢(m) do not matter)

Ilb) — establish saddlepath-stability of the difference equation in m;
(27) around m* > 0, taken as given k* > 0, ¢* > 0

(notice: for this step the specification of v(c) + ¢(m) as

log(c) + log(m) matters)

34/73



Stability

IV Stability of steady states

Graphical characterization: example economy 1

Step lla): Phase diagram of the subsystem (25)-(26) in ¢, and k;
— we need 1st order approximate versions of eqns (25) and (26), with
‘appropriate’ terms of type Acyy1 and Aksiq:

@ for the Euler equation (25) use
VC(CtT+1) ~ VC(CtT) +VCC(CtT) : (CZH - CtT)
|
Acl,
to rewrite (25) approximately as
B(1+ fic(ket1) — ‘S)[VC(CtT) +VCC(CtT) 'ACIH]) ~ VC(CtT)

~ ve(el)

VC(CtT) 1

& A~ — -1 =
e vee(el) | B(1+ fie(key1) — 6)

] (30)

35/73



Stability

IV Stability of steady states

Graphical characterization: example economy 1

Step Ila): Phase diagram of the subsystem in ctT and k;

Dynamic implication of the just established eqn (30), ie

T N_UC(CtT)'[l_ 1 }
B(L+ fi(key1) —90)

;
@ notice: —LQT) >0

v C
@ eqn features no dynamics in k, only in ¢

o — if keyy = k* = Acl; =0and

Acl1 S0 if ket 2 k7

36/73



Stability

IV Stability of steady states

Graphical characterization: example economy 1

Step lla): Phase diagram of the subsystem in ctT and k;

@ for the resource constraint (26), no approximation needed, ie rewrite
o 4 kerr = flke) + (1 —0)ke

as
Akeyq = f(ke) — 0ke — ¢ (31)

Dynamic implication of (31):

@ eqn features no dynamics in ¢’ only in k

@ — if ¢/ = f(kt) — ke = Aker1 = 0 and

Aker1 S0 if ¢ Z f(ke) — Okt

37/73



Stability

IV Stability of steady states

Graphical characterization: example economy 1

Step lla): Phase diagram of the subsystem in ctT and k;

— Combine the information contained in the two expressions

Akt

T
Aciiq

0 if ¢f = F(ke)— ke

0 if kep1 = K

VIA VIA

to represent the dynamics in CtT and k; via a phase diagram:

Here: Figure 1 (Example 1: Dynamics in c’ and k)

38/73



Stability

IV Stability of steady states

Graphical characterization: example economy 1

Step Ila): Comments on the phase diagram of the subsystem in ctT and k¢

@ Arrows in Figure 1 indicate regions of stability and instability around
k*>0,c*>0

@ Important information not yet used: (i) k > 0, and (ii) TV-condition (8)

@ For any initial departure of the state variable such that k_; # k*:
Saddle-path configuration, i.e. there exists a unique choice of the
control variable ¢g = C_T1 such that the economy jumps on the saddlepath

and converges over time towards the steady state k*, c*
@ For all other choices, the dynamics ultimately drift away from k*, c*

@ Moreover, such choices can be ruled out because the economy would
eventually hit
either: a ‘path of rising consumption and falling capital’ on which k
would become negative (but this cannot be)
or: a ‘path of falling consumption and rising capital’ on which the
present value of lifetime consumption would become smaller than the
present value of lifetime income (but this cannot be optimal)

39/73



Stability

IV Stability of steady states

Graphical characterization: example economy 1

Step llb): Phase diagram of m; around m* > 0, taken as given
k*>0,c">0

— using v(c) + ¢(m) = log(c) + log(m), (27) becomes:

1 1
B(mei1) = %F Tl =S me = 1= A(my) (32)
1+6 1+0
& mpy = Tmt — Tc* (33)
N~
am>1

— no linearization needed,ie
dynamics in my governed by a linear first-order difference equation
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Stability

IV Stability of steady states

Graphical characterization: example economy 1

Step IlIb): Phase diagram of m; around m* > 0, taken as given
k*>0,c">0

— to represent the dynamics of (32) in m; via a phase diagram, use

B 1 _ 1
14+0c* < c*'

ie the slope coefficient of B(m;1) is smaller than the one of A(m;) :

Here: Figure 2 (Example 1: Dynamics in m)
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Stability

IV Stability of steady states

Graphical characterization: example economy 1

Step 1lb): Comments on the phase diagram of the dynamics in m;

@ Arbitrary initial values of type m{, or m{ in Figure 2 lead to unstable
dynamics, moving away from m*.
This reflects that (33) is for arbitrary initial values an unstable difference
equation (in the backwardlooking sense).

@ But the backwardlooking perspective is misleading since the sequence my
has no initial condition, ie if mg jumps directly to the unique value m*
dynamics are stable (and the absence of transitory dynamics is a special
case of forward-looking saddlepath-stability)

@ Moreover, mg = m* is optimal, since:
if m{ < m*, my becomes negative for some finite horizon T (but this
cannot be) and
if m{ > m*, m; grows at the rate %. However, the TV-condition (8)
requires
lim BT -ve(c*) -mr =0

T —o0

and 0 > 0 implies that this condition will be violated (but this cannot be)



Stability

IV Stability of steady states

Example economy 1

Interpretation and comments:

@ In terms of economic insights, the particular specification of additively
separable preferences used in Example 1 illustrates that the basic MIU
model has the potential to extend superneutrality to transitory dynamics,
ie the specification supports the notion that ‘money can act as a veil’ in
the strongest possible sense

@ In terms of its technical features, example 1 exhibits a unique steady
state with (locally) saddlepath stable dynamics, ie by combining the
restrictions from both initial and terminal conditions the dynamics of all
variables are stable and uniquely defined around this steady state

@ This concept is a standard one which is routinely used in macro-models
with forward-looking agents

@ In stochastic extensions of models of this type it implies that small
shocks (within the neighbourhood around a steady state) trigger stable
and predictable reactions of optimizing agents such that the economy
eventually returns to the starting point
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IV Stability of steady states

Example economy 1

Interpretation and comments:

@ In large-scale macro models (used for forecasts and policy simulations),
which, in any case, are not recursive, this configuration cannot be verified
in simple phase diagrams. Instead, these models need to be solved
numerically. Yet, the basic intuition for the possibility of
saddlepath—stable dynamics of such systems is in line with example 1

@ Criticism: for saddlepath-stable configurations, the role of the
‘fundamentals of the economy’ (here captured by the single value k_1) is
very strong (and for many applications too strong)

@ Alternative view:
— Models should allow for self-fulfilling fluctuations, driven by
non-fundamental ‘animal spirits’ (Keynes).
— With equally simple model ingredients, this can be achieved if the
dynamics implied by the system of difference equations are somewhat
different, leading to locally indeterminate (but still stable) dynamics
(and we will briefly return to this when we sketch the analytics of stability
issues below)
— More far-reaching criticism: rational expectations assumption as

such to be modified (eg via learning) or entirely abandoned s
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IV Stability of steady states

Graphical characterization: example economy 2

Example 2: 0 >0, y = k%, and v(c) + ¢(m) = log(c) + 125

17
=m'~7, 0 ¢ (0,1)

Step I: steady state calculation
From (19), (20): values of k* and c* identical with those of example 1, ie:

b B v gand et o (B e s &P
K= Gpggap) >0 e = (g5~ ap) " >0

1 1
From (21), ie p C—m* =—m"—(m) 7

146 c* c*
B(m) A(m)
 _ 1+90 1
my = (1+9—ﬁ c)e >0
ms = 0

— unique positive values k* >, c* >0, m} >0
— but: existence of a 2nd solution m3 =0 !
45/73
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Graphical characterization: example economy 2

Example 2: 0 >0, y = k%, and v(c) + ¢(m) = log(c) + 2-m'~7, o € (0,1)

T-—0
Step Il: Phase diagram around k* >,c* >0, mj >0

Step Il, again, involves in itself a 2-step procedure:

Ila) — identical to example 1, ie (local) saddlepath-stability of the subsystem
(25)-(26) in ¢/ and k; around k* >0, ¢* >0

(remember: for this step the particular specifications of f(k) and v(c) + ¢(m)
do not matter)

IIb) — saddlepath-stability of the difference equation in m; (27) around

mj > 0, taken as given k* >0, ¢* > 0, vanishes since dynamics may converge
against mj =0

(notice: for this step the specification of v(c) + ¢(m) as log(c) + 2=m! 7,

o € (0,1) matters)
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Graphical characterization: example economy 2

Step lIb): Phase diagram of m; around mj > 0, for given k* >0, c¢* > 0
— Using v(c) + ¢(m) = log(c) + 12> m' =7, (27) becomes

_ B 1 L 10 _
Blmep1) = 7 gm M= gme— m 7 =A(m) (34)
(Pmt<mt)'mt
— According to (34), dynamics governed by a non-linear first-order difference
equation in my

— Linearized version of (34) around mj = (ligfﬁ -c*)%r > 0 (where only the
term ¢, (m;) - m; on the RHS of (34) requires linearization)

B L (s —mi) = [ — (1= 0)(m})~7)(me — m})

140 c* *
14+6
& mupy—m}= w%ﬂ—ay(mt—mn (35)
\_v_/

am>1 for V 0€(0,1)
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Graphical characterization: example economy 2

Step llb): Phase diagram of m; around mj > 0, taken as given
k* >0, c*>0

— represent the dynamics of the original, non-linearized equation (34)
in m; via a phase diagram:

Here: Figure 3 (Example 2: Dynamics in m)
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Graphical characterization: example economy 2

Step IIb): Comments on the phase diagram of the dynamics in m;

@ Complete (ie non-linear) configuration is much richer than the linearized
dynamics around mj

@ Again, for arbitrary initial values of mg # mj dynamics are unstable

o —ifmf >mj:
all paths to be ruled out by violations of the TV-condition (see ex. 1)

@ if my < mj:
— in general, also to be ruled out: my will become negative for large T
— yet: for some value m6 < m* dynamics converge against m; =0
— specifically: if the system hits m it moves in the next period to m3 =0
— this requires an infinite jump in the price level (‘hyperinflation’)
— and then the system stays at m3 = 0 forever
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IV Stability of steady states

Graphical characterization: example economy 2

Step 1lb): Comments on the phase diagram of the dynamics in m;

@ Important: dynamics towards m3 = 0 do not violate the optimality
conditions derived from forwardlooking behaviour. Why?
— At m to be satisfied:

— Compare this with the first-order condition:

1
1+4

fm(me) = o7 vele”) = 1 vele”)

— Useip = (1+r%)- % — 1. Hence, for given Py, iy — o0 as

Pg,; — oo (‘rationally expected hyperinflation’), implying 1J“ﬁi[ — 1 such
that ¢, (M) = vc(c*) can be rationalized
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Graphical characterization: example economy 2

Step 1lb): Comments on the phase diagram of the dynamics in m;

@ Technically, what is the difference between the 2 examples?
— in Example 1: Iim047(m) — —oo, while in Example 2: Iimo(p(m) =0
m— m—

— To rule out the possibility of hyperinflationary dynamics (ie Ex. 1),
money must be so necessary that the utility loss is sufficiently large (ie
infinite!) if real balances go to zero
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Example economy 2

Interpretation and comments:

In terms of its technical features, example 2 illustrates some important insights

@ The linearization of macroeconomic models, while often inevitable, can
come at a significant cost since the ‘global’ behaviour of economies can
be very different from predictions obtained from ‘local’ characterizations:
— in our case: the possibility of hyperinflationary dynamics would not
have been captured if we had used the linear equation (34) instead of the
original non-linear one (35)

@ The existence of multiple steady states leads to global coordination
problems and questions of equilibrium selection

@ These issues are at odds with the strong uniqueness property of
saddlepath-stable solutions



Stability

IV Stability of steady states

Example economy 2

Interpretation and comments:
In terms of economic insights, example 2 has a number of interesting and
partly controversial features:

@ The possibility of a purely speculative hyperinflation (where for 8 > 0 real
balances m; ultimately go to zero, ie 71 rises faster than 6, leading to a
complete collapse of the monetary equilibrium) is the flip side of the
complete dichotomy between the nominal and real side of the model

@ Neutrality and superneutrality facilitate the possibility of a self-fulfilling
and ‘de-coupled’ hyperinflation which does not affect the real side of the
economy

— How plausible is this? Why should it better be seen as a ‘degenerate’ story?
@ The qualification as a ‘degenerate’ scenario does not refer per se to the
particular functional choice of v(c) + @(m) = log(c) + 25 m' ™
@ It rather refers to a well-understood fragility of the model itself
— To rule out the hyperinflationary scenario not much is needed: as long as
the central bank stands ready to guarantee some minimal real redemption

value for money, non-fundamental hyperinflationary dynamics, by
backward-induction, can never take off
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Example economy 2

Interpretation and comments:

— in reality, such qualifications of pure fiat money regimes exist, ie
central banks hold reserves like gold and implement their standing
operations by investing in different types of assets

— interesting different traditions of monetary policy implementation:

@ US: tradition of ‘treasuries only’ (outright purchases); recently
extended to various private paper facilities

@ Eurosystem: tradition of accepting government and private paper
as collateral; recently extended to outright purchases of (some)
gov't paper

@ in either tradition: recognition of (crisis-related) lender of last
resort function of central banks to stem financial panics (via
discount window)
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:
— Reconsider the above established linearized system (28)-(29),ie:

all(k*,c*) alg(k*, *
a1 (k*, c*) am(k
am = am(k*, c*, m*) is a scalar

— where A = {

Aim:

— i) Derive analytically the saddlepath-stable solution of the linearized
dynamics around (k*, c*, m*)

— ii) Extend the reasoning to a general classification of stability patterns of
linear systems where A is a nxn-matrix and we have n; predetermined and

ny = n— np forwardlooking variables
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

— The (in)stability of linearized systems of difference equations is
determined by their characteristic roots or, equivalently, their eigenvalues,
denoted by A

— A 3x3-system has generically 3 distinct eigenvalues (and, for
simplicity, we consider |A;| # 1)

— Special constellation of (28)-(29): because of the independence of

(29), the dynamics in m; are governed by A3 = ap,, while Ay and A; are
linked to the 2x2-matrix A
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:
Consider first:
mey1 —m* = ap - (mp —m*)
N~
A3
— The eigenvalue an, induces a linear mapping such that the scalar argument
(m¢ — m™*) is scaled up or down over time, depending on whether |a,| 21

Backwardlooking interpretation:
If [A3] < 1: stability for arbitrary initial conditions m; # m*

Forwardlooking interpretation (see Ex 1 and 2):
— Since my introduced as a forwardlooking variable w/o initial (but with
terminal) condition stability requires [A3] > 1
— Why? Rewrite the eqn as
* 1 * 1 T *
me—m = (e —m) = ()T (meer = m)
A3 A3

implying m; = m* since the term m;; 7 — m™* is bounded by the terminal
condition such that _lim ()%3)7— (M —m*) =0
T —oo
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

Consider now:
CLl_C* _ A CtT*C*
key1 — k* ke — k*
— Is there a counterpart to the just discussed scalar a, = A3 for the
2x2-system governed by A?
T _ %
— To simplify notation let hty1 =A-h with: hy = { Ct ¢ }
t

— Special case: Assume
A-he=A-he = hey1,

ie the matrix A induces a linear mapping such that the vector argument hy is
scaled up or down over time, depending on whether |A| 2 1

In such special case denotes:

i) the scalar A an eigenvalue of the matrix A

ii) the vector h = g an eigenvector of A, associated with the eigenvalue A
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

— From the eqn
Ag=A-gq

eigenvalues solve the equation

[A—All-g=0, with: | =]

10 ]
0 1

— For non-trivial solutions (ie g # 0), the matrix [A — Al] needs to be
‘singular’ (ie the inverse of [A — Al] does not exist), leading to the so-called

characteristic equation:

a1 —A a1

A-All=0 <«
| | a1 apn —A

=0

Equivalently, the characteristic equation can be written as
A? — (a11 + a)A + (a3 — a12a21) = 0 (36)
| S —— . IS —
Tr(A) Det(A)
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

— The characteristic eqn (36) is a quadratic eqn in A
— There exist generically two different eigenvalues A; and Ay, ie

Ma =2 Tr(A) & 2 - \/(Tr(A)72 — 4 Det(A)

1 — Ho
_ and go = ( _

q1'H1) (CI2'P‘2)
— since each A; generates 2 linearly dependent equations, the associated
eigenvectors have a unique direction (via g;), but not a particular length

— with associated eigenvectors q; = (

Some simplifying notation:
— 2x2—Matrix @ of stacked eigenvectors:

Q= =[_ " _H
(o 2] =1 a1 M1 92 My }
— 2x2—Diagonal matrix A of eigenvalues:
AL O
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

— Write the definition of eigenvalues and eigenvectors in matrix form:

AQ=Alqial=lmal [y =0

— Since Q- Q1 =/, rewrite the matrix A via its ‘Jordan canonical form’:
A=Q-A-Q1

where it is customary to order the eigenvalues in A by size (starting with the
smallest one in the top left corner of A)

— The inverse matrix Q1 of Q is also 2x2-matrix:

a1 oy —Hy
Q" = Der(q)!

—q1 K M q21 g2
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

— Define a new vector z; containing linear combinations of the initial
variables with weights taken from Q@1 such that

z _
zt:( z;Z ):Q 1'ht|

21 =qi1-hie+qr2-hoe and 220 = qo1 - h1t + G2 - hot

— Rewrite the initial 2x2—system (28), ie
hiy1 = A" ht,
using A=Q-A-Q1as
Ql hii=z11=A 2z (37)

Notice: Since A is a diagonal matrix, eqn (37) consists of two ‘de-coupled’
first-order difference eqns, qualitatively similar to (29), ie we can write it as

Z21e41 = A1-zZip

241 = A2-zo 0 /73
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

— The pair of equations
Z1,t+1 = A1 “Z1t and 22,t+1 = Ao C 22t (38)
describe the general solution of the 2x2—system
hep1 = A-hy
— Equivalently, the general solution can be written as

h1¢ H ¢ H ¢
he=( " )=(_"1 )AT+( "2 )-A 39
O =M (Gl 0 )
— Using either (38) or (39), the definite solution can be obtained if one uses
the initial and terminal conditions
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:
— Recall: one predetermined variable (k) and one forwardlooking variable (c¢)
— Assume: |A1| <1and |Ay| >1

Notice: it can be verified that the matrix A derived from the linearized eqns
(25) and (26) generically satisfies this pattern of eigenvalues

Since |A2| > 1 solve the second eqgn 1 =AMzt
forward, ie rewrite it as
1 1.7
z = — . Z = (— . Z
2.t /\2 2,t+1 (/\2) 2,t+T

and deduce from 7_lim (/\%)T - 23, ¢+ 7 = 0 the solution

—00
ne=q1 he +q0- hr =0,
~— ~—~—
¢ —c* ke—k*
implying that the forwardlooking (control) variable ¢ should be set s.t.
o —ct = —g-(kt—k*) (40)
q21
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V Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

— What about the dynamics in (ky — k*) ?
— Use the first eqn

zi 41 =A1-z1p witht zp e =qu1 b1+ g2 o

— Substitute eqn (40),ie

o —ct = _ 922 (ke — k™).
N—— q21
hy e hat

in the first eqn to obtain

[q12 — Q11q~} (kty1 — k™) = A1 -[g12 — g1 N] (ke — k™),
q21 q21
implying for the law of motion of the state variable k :
key1 — k™ = Ar- (ke — K¥) (41)
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V Stability of steady states: analytical solution

Comments on the solution and generalizations

Solution:

— The two eqns (40) and (41), ie

kt+]_7k* = )Ll(ktfk*)
Ct4+1 — C* = —g . (kt - k*)
g21

T *
¢ —¢

are the solutions, summarizing Vt > —1 the behaviour of the linearized versions
of (25) and (26), as captured by the matrix A, along the linear saddlepath until
convergence of k; and ¢/ against k* and c¢*

— The derivation of (40) and (41) has used that we have 1 stable and 1

unstable eigenvalue which we have matched with the single initial and the
single terminal condition
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V Stability of steady states: analytical solution

Comments on the solution and generalizations

Initializing the system at t = —1:

— Recall: k_p is the single initial condition of the system (40) and (41)

— Consider the two eqns at t = —1, ie
ko —k* = Ap-(k_1—k")
cfi—c* = q—c'= —g-(k_l—k*),
q21

implying that we managed to initialize the law of motion for k; and c; by the
single initial condition k_1

— for all t > —1 : unique values of k; and c; determined recursively by (40)
and (41)
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Comments on the solution and generalizations

Cross-equation restriction:
@ Equations of type (40), ie

c]—c*z—g~(kt—k*)
q21
are examples of cross equation restrictions
@ In general, restrictions of this type, going back to Lucas (1976), are a key
feature of macro-models which incorporate forwardlooking behaviour and

are intimately linked to the so-called Lucas critique

@ This critique revolutionized macroeconomic analysis 40 years ago

@ The Lucas critique says that econometricians who want to estimate a
relationship like (40) need to be aware that coefficients like —g22/go1
consist not only of structural (‘deep’) parameters like a, B or , but also
of policy parameters (like 0)

@ In particular, changes in parameters of policy rules do affect such
coefficients, implying that policy advice based on past estimates of
such coefficients will be systematically wrong
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V Stability of steady states: analytical solution

Comments on the solution and generalizations

Cross-equation restriction (cont’d):

@ Remark: for the special system characterized by additively separable
preferences the single policy parameter 6 does not enter the dynamics
governed by A, ie for this very special system the Lucas critique does not
apply

@ However, in general, assuming non-separable preferences with
u = u(c, m) such that one obtains a fully integrated 3x3—system in ki, ¢;
and my, the Lucas critique does apply. In other words, the coefficient
linking consumption and capital (and, hence, output) will be a function of
the policy parameter 6

@ In case policymakers announce a systematic change in their policy rule
(here: ‘change in 6'), forwardlooking agents will incorporate this in their
decisions. Policy-advice not internalizing this reaction will be misleading
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V Stability of steady states: analytical solution

Comments on the solution and generalizations

Generalization | (Large-scale deterministic linear systems):

— Consider an economy characterized by n; predetermined (or state)
variables with initial conditions and ny = n — n; forwardlooking (or control)
variables with terminal conditions

hi ht
hep1 = o —A. L =A-hy,
t+1 t

where A is a nxn—matrix, h is a nx1l—vector and h* and hf are nyx1 and
nyx1—vectors of predetermined and forwardlooking variables, respectively
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V Stability of steady states: analytical solution

Comments on the solution and generalizations

Generalization | (Large-scale deterministic linear systems):

Blanchard-Kahn (1980) conditions:

If the system is to have a unique stationary equilibrium, n; eigenvalues
of the matrix A need to satisfy |A;] <1, i =1,2,..,n1, while n
eigenvalues need to satisfy Mj| >1,j=m+1,..,n.

If there are fewer than ny eigenvalues with ]/\j} > 1, then the system is
characterized by multiple stationary equilibria (indeterminacy)

If there are more than n; eigenvalues with ‘Aj| > 1, then no solution
exists

If a unique stationary equilibrium exists, the solution takes the form:
he i =M-hf and hf =C-hF

If there exist multiple stationary equilibria (indeterminacy):
— possibility of self-fulfilling fluctuations (‘animal spirits’)

71/73



Background: analytics of stability

V Stability of steady states: analytical solution

Comments on the solution and generalizations

Comment 1: Unit roots

@ If eigenvalues satisfy the borderline case of |A;| =1 (‘unit root’), the
classification can be adjusted:
If the system is to have a unique equilibrium, n; eigenvalues of the
matrix A need to satisfy |A;| <1, i =1,2,.., n1, while ny eigenvalues
need to satisfy |)\j| >1,j=m+1,.,n.

@ Intuition: Eigenvalues satisfying |A;| = 1 create special dynamics in the
sense that the system will not return to its starting point, but neither will
it explode

@ Numerically, such constellation is not generic (ie the probability that we
hit such special value for ‘arbitrary’ matrices A is zero)

@ However, many models have deliberately a theoretical design such that
unit roots do matter (eg permanent as opposed to transitory technology
or taste shocks etc)
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V Stability of steady states: analytical solution

Comments on the solution and generalizations

Comment 2: Level changes vs. percentage deviations

@ Typically, to make reactions between the various variables comparable,
the representative entries of hf and hf are specified as percentage
deviation of some variable from its steady state, like, eg,

ke — k*
k*

*
~ ~ Ct —C
W=k = or hf=g=""""

C*
and not the absolute differences (as done above)

@ Variables with a hat-notation (k;, & etc.) typically describe such
percentage deviation

@ This change in representation matters only at the stage when the
linearizations are done, but not afterwards
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