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1 A principal-agent model

There are two individuals, the principal and the agent. The agent lives T periods and
at each period t ∈ {1, . . . , T} he works nt ≥ 0 and consumes ct ≥ 0. For each unit
of labor he obtains one unit of income that can be spent in any period. The agent is
myopic and has an instantaneous utility function vt given by

vt = θtu(ct)− nt

with u′ > 0 and u′′ < 0, where θt ∈ [θ, θ] is privately known.
The principal is forward-looking but not fully informed as he does not know the

true value of θt. He maximizes expected intertemporal utility of the agent

S = E1Σ
T
t=1vt

given a dynamic budget constraint for wealth at,

at+1 = (1 + rt)(at + nt − ct),

with a positive interest rate rt.
You are the principal and you would like to solve the maximisation problem by

using dynamic programming. The control variable is ct only.

1. Formulate the Bellman equation and derive an Euler equation for this problem.

2. Provide an interpretation to this equation.
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2 A two period model

Considering a similar setup to above, let the individuals now live for two periods
only. In each period t ∈ {1, 2} the agent works nt ∈ [0, n] and consumes ct ≥ 0.
Instantaneous utility is again vt = θtu(ct)− nt. For each unit of labor he obtains one
unit of income. Income can be stored and a positive interest rate r is paid on savings.
The intertemporal budget constraint is

n1(1 + r) + n2 = c1(1 + r) + c2.

Consider first the case of complete information. Assuming the absence of discounting,
the principal’s utility function then reads

U = v1 + v2

with u′ > 0 and u′′ < 0, where θt ∈ [θ, θ] is known.
Solve the maximisation problem of the Principal using the Lagrangian.

1. Compute the first-order conditions, when control variables are both ct and nt.

2. Do you obtain an interior solution for n1?

3. Deduce the relation between marginal utility from consumption today and to-
morrow. Interpret your result. Can you derive explicit expressions for ct, if
utility is given by u(ct) = ln ct?

Now consider the case of incomplete information.

4. How does the utility function of the principal look like?

5. Compute optimal consumption and labour supply levels from the perspective
of the principal, where utility is given again by u(ct) = ln ct.

6. Does utility under incomplete information rise?
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3 Simple RA-model

In a rational addiction (RA) model, the consumer’s problem is to maximize∫ T

0

U(C(τ), A(τ), D(τ))e−rτdτ, (1)

subject to the instantaneous budget constraint

Y = C(τ) + pA(τ),

where A(τ) is consumption of the addictive good at time τ , C(τ) is consumption of
non-addictive goods at τ and D(τ) is the stock of addiction of past consumption of
A. The derivatives satisfy UA, UC > 0 and UD < 0. The consumer maximizes (1)
subject to the equation of motion for D:

Ḋ = A− δD,

where δ, 0 < δ < 1, is the instantaneous rate of decay of the stock of addiction, which
will be treated as a constant, which is independent of time.

1. Solve the problem above, using the Hamiltonian.

2. Derive a differential equation for A using the derived optimality conditions.

3. Draw a phase diagram with A on the y-axis and D on the x-axis, where the
differential equations are given by

Ḋ = A− δD and Ȧ =
UD − [r + δ][pUC − UA]

p2UCC + UAA
,

whereas the utility function U is given by

U = lnC + A−D2.

4. Provide an economic interpretation of the phase diagram. Think of A as smok-
ing and D as coughing from lung tar.
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