Advanced Macroeconomics

Leopold von Thadden
Winter Term 2013/14
Problem Set 4:
Systems of Difference Equations

Problem 1: 2x2—Systems of first-order (linearized) difference equations
Consider the linearized 2 x 2—system
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with general solution (assuming |\;| # 1,7 =1,2)
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as derived in the Lecture Notes.

a) Backwardlooking stability
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i) Ilustrate the dynamics of (1) with a phase diagram.
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ii) Calculate the eigenvalues and eigenvectors of A.
iii) Assume that the initial values of hy and hy in t = 0 are given (predeter-
mined) by hy o = ha = 1. Derive the definite solution of (2).

b) Forwardlooking stability (one-dimensional)
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i) Illustrate the dynamics of (1) with a phase diagram.
ii) Calculate the eigenvalues and eigenvectors of A.

iii) Impose the terminal condition limy_, k17 = 0 and assume that the initial
value of hy in t = 0 is given (predetermined) by hy o = 1. Derive the definite
solution of (2).



