Advanced Macroeconomics

Leopold von Thadden Winter Term 2013/14 Problem Set 3: Phase Diagram

Problem 1: Dynamics in c and k: solution via a phase diagram Consider the dynamic system in c_t and k_t such that $\forall t \ge 0$

$$U'(c_t) = \beta U'(c_{t+1})[f'(k_{t+1}) + (1-\delta)]$$

$$c_t = f(k_t) - k_{t+1} + (1-\delta)k_t,$$

with one initial condition $(k_0 \neq k^*)$ and one terminal condition (i.e. the Transversalitycondition), as derived in the Lecture Notes.

Assume that preferences with respect to consumption are given by the particular function

$$U(c_t) = \frac{1}{1 - \Phi} \cdot c_t^{1 - \Phi} \quad \text{with } \Phi > 0, \Phi \neq 1$$

- a) Find an interpretation for the parameter Φ .
- b) Derive a phase diagram in order to characterize the dynamics in c and k. (\rightarrow Notice that in this particular case you do not need to linearize the consumption Euler equation.)
- c) Interpret the dynamics based on the phase diagram.