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Motivation

| Motivation

@ This Lecture introduces the basic dynamic general equilibrium
model of a closed economy which is at the heart of modern
macroeconomics

— Main reference: Wickens, Chapter 2, Sections 2.1-2.4

@ Goal: we will analyze how to optimally allocate output between
consumption and investment (ie capital accumulation) or,
alternatively, between ‘consumption today' and ‘consumption
tomorrow’



Motivation

| Motivation

In this lecture we will isolate a few core aspects. Many important things
will be missing. For example:

@ there will be no government, no market structure (in particular: no
financial markets), no money (such that all variables are in real, not
in nominal terms)

@ there will be no uncertainty and no sources of persistence

@ the labour supply will be fixed and capital can be installed without
adjustment costs

@ there will be no population growth and no technical progress



Motivation

| Motivation

Why do we start with such a seemingly unrealistic and simplistic
macroeconomic model?

There is a good scientific tradition to start out from simple,
well-understood structures

Complexity can always be added, but this needs to be done in a
disciplined way

Otherwise we would have to rely immediately on numerical methods
which are routinely used for large-scale macroeconomic models

But such methods will only be illuminating if the core of a model is
sufficiently simple such that it can be ‘understood’

Subsequent lectures will cover extensions and add additional features



Motivation

| Motivation

The basic model of the centralized economy, notwithstanding its simplicity, has
been very influential over decades

— Interpretations of the basic model:

@ Frank Ramsey (1927) introduced a similar version to study taxation
issues. Hence, the model is often called the Ramsey model

@ The model can be interpreted as a social planning model in which
decisions are taken by the central planner, taking as given individual
preferences

@ The model gives rise to a representative agent model, in the sense that
all economic agents are identical (and households and firms have the
same objectives)

@ Since there exists, in fact, only a single individual, the model describes a
Robinson Crusoe economy

@ The model is the basis of neoclassical growth theory (Solow, 1956,
Cass, 1965, Koopmans, 1967)



Basic model ingredients

Il Basic model ingredients

Notation

@ Consider a closed economy with a constant population N

@ In a representative period t, we consider the following aggregate
variables (using capital letters):

Ye
G
K:
e

St

output

consumption

predetermined level of capital available for production
gross investment undertaken within the period
savings

@ Alternatively, consider these variables in per capita form (using lower
case letters), ie output per capita is given by

@ Similarly:

Y:

}’t:W
WGk kS
f_Nr t_NlI'_Nrt_N
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Basic model ingredients

Il Basic model ingredients

Key equations

To capture choices between ‘consumption today' and ‘consumption tomorrow’
in a closed economy consider 3 basic equations (per capita form)
1) Resource constraint (national income identity):

yt = ¢t +it, (1)
where we use that savings are equal to investment, ie
St=yt—C =1t
2) Capital stock dynamics
Akt 1 = iy — Ok, (2)
——
k1 —ke

saying that Ak;41(ie net investment) results from gross investment (i¢) minus
depreciation (where we assume that a constant proportion § € (0,1) of the
existing capital stock depreciates in period t)



Basic model ingredients

Il Basic model ingredients

Key equations

3) Production function
Idea: The ‘neoclassical’ production function f is such that an increase in k
increases output, but at a diminishing rate.
Let kK > 0. Then:
f(k) >0, f'(k)>0,f"(k)<0
Moreover:

lim f'(k) — o0, lim f'(k) — 0

k—0 k—o0

These are the so-called ‘Inada-conditions’. What do they say?

@ at the origin there are infinite output gains to increasing k
@ these gains decline as k becomes larger

@ they eventually disappear if k becomes arbitrarily large



Basic model ingredients

Il Basic model ingredients

Key equations

Comment: Production function (aggregate vs. per capita output)

@ Notice that
ye = f(ke)
is in per capita form

@ The aggregate production is given by
Y = F(Ke, N).
In neoclassical tradition, F has constant returns to scale, ie for any
proportionate variation A of both inputs the function F satisfies
F(AK:, AN) = AF(Ke, N) = AY:
@ Hence, assuming A = % per capita output satisfies
ye= 2t = Flke1) = F(k)

@ ‘Notice’: in some textbooks (eg. Wickens) you find the alternative

notation for per capita output

F(ke, 1) = F(ke)



Basic model ingredients

Il Basic model ingredients

Key equations

@ We can combine eqns (1)-(3) and eliminate y; and it such that the
resource constraint simplifies to

f(kt) = Ct +Akt+1 +5kt

@ Since Akiy1 = ki+1 — ke, this equation acts like a dynamic constraint on
the economy

@ Equivalently, to see how this equation restricts the feasible choices of
consumption over time, write it as

ce = f(ke) = kep1 + (1= 6)ke (4)
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Basic model ingredients

Il Basic model ingredients

Key equations

Interpretation:

@ Eqn (4), ie
Ct — f(kt) - kt+l + (1 - 5)[(1»

can be read as follows:
— Consider an initial period t = 0 with a given (ie predetermined) value
ko (which fixes output f(kg) in period t = 0)
— Assume there exists some rule or some regularity which tells us for the
given value of kg how to determine the consumption level c¢g.This will
implicitly determine k.
— If we use the same rule again in t = 1 we find c1, and, implicitly, k»
— Continuing this recursive logic for t =2, 3,.., T, we can derive the
entire sequence of ¢ and k into the infinite future (ie T — o0)

@ Notice that eqn (4) is non-linear because of the term f (k)
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Basic model ingredients

Il Basic model ingredients

Possible choices for consumption: overview

Given the just derived dynamic constraint (4), ie
ce = f(ke) — ke + (1 —0)ke

we need some criterion or objective in order to determine optimal choices of
consumption

@ An extreme choice would be entirely myopic, ie for a given value kg the
highest possible level of ¢y in period t = 0 amounts to

VP = F(ko) + (1 — 6)ko

Yet, this choice would imply k; = 0, ie it is not sustainable (in fact, it
would imply zero output and zero consumption in all future periods!)
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Basic model ingredients

Il Basic model ingredients

Possible choices for consumption: overview

@ A more reasonable criterion is to impose that consumption levels should
be sustainable, ie consumption should be maximized in each period

@ We will consider two alternatives: the so-called golden rule solution and
an optimal solution

@ The key difference between the two solution concepts is that under the
optimal solution future consumption will be discounted, while the golden
rule ignores discounting
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Golden rule solution

[11 Golden rule solution

@ The golden rule solution is derived from a long-term objective:
— it maximizes the (constant) amount of per capita consumption in each
period
— by doing so, it treats members of different generation alike (‘golden
rule’)

@ Hence, going back to eqn (4), ie
ct = f(ke) — kegp1 + (1 — ) ke

we consider a long-run (or ‘steady-state’) situation in which all per capita
variables are constant (in particular k; = ki1 = k), leading to

c=f(k)—9Jk (5)

@ Eqn (5) implies that net investment will be zero, ie
the only investment undertaken is such that it replaces depreciated
capital, facilitating a constant capital stock over time
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Golden rule solution

[11 Golden rule solution

@ Given the steady-state resource constraint (5), ie
c = f(k) — bk,
how should one optimally choose ¢ ?

— To find the golden rule solution we solve the maximization problem

max f(k)— ok

@ The golden rule capital stock kgg is implicitly characterized by the
first-order condition

de _ f'(kgr) —6=0

dk GR =y

and the second-order condition, evaluated at kggr,
d’c
dk?

ensures that kgg is a maximum (and not a minimum)

= f”(kGR) <0



Golden rule solution

[11 Golden rule solution

Uniqueness:
Given the assumptions on f, the optimum kgr which solves
f'(ker) = 6 (6)
is unique and the associated unique consumption level cggr is given by
cGr = f(ker) — Oker (7)

Interpretation of the golden rule solution:

@ Eqn (6) says that steady-state per capita consumption will be maximized
if the marginal product of k equals the depreciation rate &

@ Below the level kgr a marginal increase in k increases c,
since the marginal gain in output (ie f/(k)) exceeds the output cost of
replacing depreciated capital

@ Above the level kgr a marginal increase in k would decrease c,
since the marginal gain in output (ie f/(k)) is smaller than the output
cost of replacing depreciated capital
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Golden rule solution

[11 Golden rule solution

Comparative statics

Let us use the golden rule solution to introduce the notion of comparative
statics:

@ Idea: how do long-run (steady-state) solutions of endogenous variables
change if an exogenous parameter changes?

@ Typically we can sign these changes, by using the information embodied
in the functional forms that are used

Particular example:
— Assume the rate § at which capital depreciates increases...
— ...How do k¢gr and cggr react to the exogenous change in 6 7
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Golden rule solution

[11 Golden rule solution

Comparative statics

Particular comparative statics example: increase in §
@ Recall that the first-order optimality condition
f'(ker) =6

establishes only an implicit dependence of kgg on &, ie we cannot directly
differentiate kgr with respect to ¢

@ Yet, since this optimality condition will be satisfied for any exogenous
value J, we can write it as an identity

F(ker (6)) —6 =0 (8)
@ Differentiating (8) w.r.t. 6 (where we use the chain rule) yields
dker

f//(kGR)' do 1 EO,

implying
dkgr 1
45~ Fker) ~° ©)

— an increase in § makes the accumulation of capital more costly, leading to a
decline in kggr
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Golden rule solution

[11 Golden rule solution

Comparative statics

What about the reaction of cgg to a change in §?

@ To respect the implicit dependence of kgg on J, express (7) as

cGr = f(ker(8)) — 0kgr(4)

@ Differentiating cgr with respect to  gives:

degr - _ d[f(kgr(9)) — dker(9)]
do do
= [f'(ker) — 4] dl;st — kgr(0)
=0
= —kGR((S) <0

— an increase in § leads also to a decline in cgr
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Golden rule solution

[11 Golden rule solution

Comparative statics

Comment:
@ To derive comparative statics results from implicit relationships like
f'(ker) =6

there exist alternative techniques

@ In particular, if one totally differentiates the relationship at the
equilibrium one obtains

f"(kgr) - dk = dé,
which can be rearranged to confirm (9), ie

dkgr 1
45~ Plker) ~ O
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Golden rule solution

[l Golden rule solution
What is missing?

@ Lecture 1 argued that modern macroeconomics attempts to base the
analysis on micro-founded welfare criteria, consistent with optimizing
behaviour of the representative consumer

@ The golden rule analysis carefully incorporates the dynamic constraint
relating to capital stock dynamics...

@ ...but it is silent on whether there exists an individual welfare measure
that would generate the golden rule solution
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Golden rule solution

[l Golden rule solution
What is missing?

@ In particular, the golden rule analysis pretends that individuals value
consumption today and consumption tomorrow in the same way

@ But this is not a satisfactory assumption, given the observed impatience
in decisions of consumers

@ This aspect is captured by the so-called optimal solution (meaning that
the optimality criterion corresponds to a micro-founded welfare objective
which incorporates impatience)
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Optimal solution

IV Optimal solution

Objective

Let the representative period be denoted by t

Assume there exists in the initial period t = 0 a predetermined per capita
capital stock kg

Let V denote the present value of current and future utility, as given by:
(o)

Vo =Y BU(c,), (10)
t=0

where the instantaneous utility Us = U(c,) satisfies U’(c,) > 0 and
U"(c,) <0, ie within any period additional consumption increases utility
but at a diminishing rate
The objective Vj is additively separable which makes it easy to compare
utility between periods
Future utility is discounted by the constant factor B which satisfies
0<p<1
Alternatively, we can define the corresponding discount rate 8 > 0, with:
1
P=150
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Optimal solution

IV Optimal solution

Objective

@ The goal pursued by the optimal solution is to choose current and future
consumption such that the objective (10), ie

Vo = ioﬁfum),

will be maximized subject to the above established dynamic constraint
(4), ie
Ct = f(kt) — kt+1 —+ (1 — 5)/(1»
@ We will solve this dynamic optimization problem by using the Lagrange
multiplier technique

24
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Optimal solution

IV Optimal solution

Solution based on Lagrange multipliers

— Consider the objective £ which incorporates the resource constraint (4)
— In order to maximize (10) s.t. (4) we optimize, equivalently,

L= io{[;tu(ct) + Ae[f(ke) —ct — ke + (1= 6)ke]}

over the choice variables {ct, ki11, and Ay; Vt > 0}
— A¢ is the Lagrange multiplier t periods ahead, measuring the shadow value
of an additional unit of period t income (in terms of utility of period 0)

First-order optimality conditions (‘FOCs’, interior) w.r.t. c¢, k¢, At :

9L _ B U (ct) — At =0 t>0 (11)
aCt

oL .

oL

— = f(lke)—ct—key1+(1—-6)ke=0 t>0 (13)
oA+
Transversality condition: lim B*-U'(c,) k1 =0 (14)

t—00 | ;
At
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Optimal solution

IV Optimal solution

Solution based on Lagrange multipliers

Comment: How to read the just derived equations (11)-(14)?

@ These are necessary conditions for optimality

@ The sufficient conditions for a maximum are satisfied, given our
assumptions on functional forms

@ Notice: The concept of intertemporal optimality applies to sequences of
variables, ie the equations form a system of difference equations
characterizing the behaviour of the equilibrium over time

@ Crucial for the exact time paths of variables consistent with such system:
initial and terminal conditions
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Optimal solution

IV Optimal solution

Solution based on Lagrange multipliers

Comment: Initial condition

@ By assumption, the economy starts to operate in t = 0, taken as given
the predetermined level of the per capita capital stock kg
— k is the single predetermined (state) variable of the system

@ In period t = 0, the per capita consumption level ¢y can be freely chosen
— c is the single forwardlooking (control) variable w/o initial condition

@ These features will become relevant when we discuss stability issues below
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Optimal solution

IV Optimal solution

Solution based on Lagrange multipliers

Comment: Terminal condition

@ The transversality condition (14), ie

lim Bt U'(c,) key1 =0,
t—o0 —_———
At
closes the system by backward induction from the (distant) future

@ To see how this can be made operational, consider first some large and
finite value of t, ie a distant period somewhere far out in the future...
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Optimal solution

IV Optimal solution

Solution based on Lagrange multipliers

Comment: Terminal condition

@ ...For any finite value of t, the term

B U'(ct)  kep1 = Ae - ke

describes the present value of the utility that could be obtained if k;y; (ie
the capital stock for the next period resulting from investment decisions
in t) will be consumed at t rather than being left for production for t 4+ 1

@ |If this particular value of t marks the terminal period it cannot be
optimal, not to consume everything in the terminal period

@ Infinite horizon analogy: There exists no terminal period, but as t — oo,
it cannot be optimal to postpone consumption forever, ie

tImeAtkt+1 = 0,

as specified by (14).
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Optimal solution

IV Optimal solution

Solution based on Lagrange multipliers

Simplification of the FOCs:
@ Let us reconsider the FOCs (11) and (12), ie

ﬁtU/(Ct) _)\t =0 t>0
/\t[f/(kt)+(1—(s)] —/\t71 = 0 t>0

@ We can obtain the Lagrange multiplier from the first eqn and substitute
for At and A;_1, respectively, in the second eqn, leading to

BV (co)[f' (k) + (1= 0)] = 71U (ce-1) t>0

@ Equivalently, after dividing by ,Btfl and updating of all terms by one
period, we can rewrite this eqn as

BU' (ces1)[f'(ker1) + (1= 0)] = U'(cr),  t>0 (15)

which is the so-called consumption Euler equation
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Optimal solution

IV Optimal solution
What do we get?

2 key equations:
@ Recall from above that via eqn (13) the optimization preserved the
dynamic resource constraint (4)

@ In sum, the (consolidated) intertemporal equilibrium consists of the
consumption Euler equation and the resource constraint, ie we have
Vt>0:

Uler) = BU'(ces1)[f (kes1) + (1= 0)] (16)
Ct = f(kt) - kt+1 + (1 - (S)kt (17)

— We have reduced the dynamics to a non-linear two-dimensional
dynamic system in ¢ and k with one initial condition (ko) and one
terminal condition, as given by the transversality condition (14)

@ Before we analyze the system (16)-(17), we will give some more
interpretation to the consumption Euler equation
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Optimal solution

IV Optimal solution

What do we get?

Interpretation of the consumption Euler equation:

@ The consumption Euler equation (16), ie

BU' (ces1)[f'(kep1) + (1= 0)] = U'(c),  t>0

is the fundamental dynamic equation in intertemporal optimization
problems in which consumers actively decide about how to choose
between ‘consumption today' and ‘consumption tomorrow’

@ In eqn (16), ‘today’ corresponds to t = 0. Since the optimization holds
YVt > 0, the recursive nature of the FOCs implies that ‘tomorrow’ covers
not only t = 1, but all subsequent future periods, ie t = 2, 3,...T...etc.
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Optimal solution

IV Optimal solution

What do we get?

@ The consumption Euler equation

BU' (ce1)[f (ke1) + (1 =6)] = U'(cr)

can be seen as an intertemporal arbitrage condition, saying that at the
optimum the representative consumer must be indifferent between
consuming a marginal unit of ¢, yielding extra utility

U'(ce),

or, alternatively, investing this unit and consuming the return one period
later, yielding extra utility

BU (cp i) [F (ket1) + (1= 0)]

@ The discount factor B ensures that consumption today and tomorrow will
be comparable in terms of utility
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Optimal solution

IV Optimal solution

Long-run (steady-state) features of the optimal solution

@ Let us go back to the pair of equilibrium eqns (16) and (17), ie

BU' (ces1)[f (ket1) + (1 —6)]
f(ke) = keyr + (1= 0)ke

U'(ct)

Ct

@ Long-run (‘steady-state’) equilibria exhibit constant variables

@ From (16), the optimal long-run (per capita) levels k* and c* satisfy

U'(c") = BU'()IF' (k") + (1 = )],

implying
f’(k*):%71+5:5+9 (18)
@ From (17):
c* = f(k*)—6k* (19)

34 /41



Optimal solution

IV Optimal solution

Long-run (steady-state) features of the optimal solution

— Steady states of the optimal solution satisfy (18) and (19), ie

(k) = 6+6
= f(k*)—0ok*

@ Eqns (18) and (19) can be solved sequentially for k* and c*

@ Given the assumptions on f, there exists a unique steady state

Interpretation of the (steady-state) optimal solution:

@ The optimal solution has k* < kggr, since 6 +6 > ¢
@ Moreover, c* < cgg, since c* does not maximize f(k) — ok

@ These findings reflect the role of 6 : because of impatience the
representative consumer does not reach the higher long-run consumption
level CGR
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Optimal solution

IV Optimal solution

Dynamics of the optimal solution

— Stability of the steady state?

@ Recall from above that dynamics are governed by eqns (16) and (17), ie
Uler) = BU (1)l (ker) + (1= 9)]
Ct = f(kt)fkt+1+(17(s)kt,

ie a non-linear two-dimensional dynamic system in ¢ and k with one initial
condition (kp) and one terminal condition (ie the TV-condition (14))

@ It can be shown that the dynamics are stable in a particular sense, ie the
system is (locally) saddlepath-stable
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Optimal solution

IV Optimal solution

Dynamics of the optimal solution

Saddlepath-stability:

@ Saddlepath-stability means that for any value kg close to the long-run
value k* there exists a unique value ¢y which
i) satisfies all optimality conditions and
i) sets in motion sequences {c¢t, ke+1 }LZ5° that ultimately converge
against the long-run values ¢* and k*

@ To calculate analytically the saddlepath requires some knowledge of
matrix algebra...

@ ...but the saddlepath-stable behaviour can be illustrated with a phase
diagram which summarizes the dynamic forces of a linearized version of
eqns (16) and (17)
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Optimal solution

IV Optimal solution

Dynamics of the optimal solution

@ Consider eqn (16), which displays non-linear dynamics in c, ie
U'ee) = BU (1) [ (ker1) + (1= 6)]

° To obtain locally linear dynamics in ¢, approximate U’(c,,), using a
first-order Taylor expansion around the point ¢;, such that

Ulerr) o U (er)
Ue) =T U@

Ulcrsr) = U'(e) +U" (cr) - Acry1 = “Acri1

Ct+1—Ct
@ Use this approximation in eqn (16) to get

U//(Ct) A - 1
Ulee) = 7 Bl (k) + (1—0)]
. U/(Ct) . . 1
Uite) |1 Bt + =0 |2
;;6_/
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IV Optimal solution

Dynamics of the optimal solution

@ The phase diagram will be organized around eqns (17) and (20), ie
Akt+1 = f(kt) — §kt — Ct
Ac . U/(Ct) . 1
o U(ee) L Bl (kesn) + (1=9)]

Notice that if ¢; = ¢* and k; = k* then Akiy1 = Acry1 =0

Dynamic implication of eqn (17): it features no dynamics in ¢, only in
k such that
Akey1 S0 0f ¢ = f(ke) — ke

@ Dynamic implication of egn (20): it features no dynamics in k, only in
c such that
Acri1 S0 if kepp Z k7,

These informations can be combined to represent the dynamics in ¢; and
k: via a phase diagram
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IV Optimal solution

Dynamics of the optimal solution

Comments on the phase diagram of the linearized dynamics in ¢; and k;

@ Arrows indicate regions of stability and instability around k* > 0, ¢* > 0

@ For any initial departure of the state variable such that ky # k* :
Saddlepath configuration, i.e. there exists a unique choice of the control
variable ¢y such that the economy ‘jumps’ on the saddlepath and
converges over time towards the steady state k*, ¢*

@ How does consumption optimally react along the saddlepath?
i) Consider a temporary negative shock to the capital stock: kg < k*.
— The saddlepath is such that on impact ¢y < ¢* will be optimal
— Thus, temporarily, consumption will be smaller than ¢* such that
some output can be diverted to rebuild the capital stock
— This flexible short-run response of consumption is optimal, since it
ensures that the long-run level c* remains feasible
ii) Consider a temporary positive shock to the capital stock: ky > k*.
— The reverse response pattern will be optimal, ie ¢g > ¢*
— Temporarily, consumption can be larger than c*,
w/o endangering the feasibility of the long-run level c*
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IV Optimal solution

Dynamics of the optimal solution

Comments on the phase diagram of the linearized dynamics in ¢; and k;

@ Important information not yet used: (i) k > 0, and (ii) TV-condition (14)
— For all other choices of ¢ (ie off the saddlepath), the dynamics
ultimately drift away from k*, c*

@ Such choices can be ruled out because the economy would eventually hit
either: a ‘path of rising consumption and falling capital’ on which k
would become negative (but this cannot be)
or: a ‘path of falling consumption and rising capital’ on which the
present value of lifetime consumption would become smaller than the
present value of lifetime income (but this cannot be optimal)

@ In sum, saddlepath-stability implies that the system is not only stable, but
that the dynamics towards the steady state are uniquely determined
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