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3 Setting up a random environment

• In a stochastic world, all quantities take the form of random variables

• We will first review some basic concepts from probability theory required for our purposes

• Following structure is very condensed. You are strongly encouraged to consult Stachurski
(2009) for a more in-depth treatment.

• In the sequel we work with infinite discrete time periods T = {0, 1, 2, . . .}.

• If A is any set, 2A or Pow(A) denotes the power set, i.e., the class of all subsets of A.
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3.1 Basic concepts from probability theory

3.1.1 Probability spaces and random variables

• Randomness in our model enters via an exogenous stochastic process (θt)t≥0, i.e., a se-
quence of random variables with values in Θ ⊂ RN , N ≥ 1.

• All these random variables live on an underlying probability space (Ω,F ,P), where:

◦ Ω is the sample space which represents all possible states of the world

◦ F ⊂ Pow(Ω) is a collection of subsets of Ω that form a σ-algebra, i.e., (i) Ω ∈ F , (ii)
A ∈ F implies Ac := Ω\A ∈ F and (iii) (An)n≥0, An ∈ F ∀n implies ∪∞

n=0An ∈ F .

◦ P : F −→ [0, 1] is a probability measure, i.e., a countably additive function satisfying
P(Ω) = 1 that assigns probabilities P(A) to each measurable subset A ∈ F of Ω

• Θ is endowed with some σ-algebra A ⊂ Pow(Θ) to become a measurable space (Θ,A )

• Since Θ ⊂ RN is a topological space, we can (and typically do) choose for A the Borel-σ
algebra B(Θ) which is the smallest σ-algebra containing the topology

• For each t ∈ T, the mapping θt : Ω −→ Θ is F −B(Θ) measurable, i.e., for all B ∈ B(Θ),
θ−1
t (B) := {ω ∈ Ω|θt(ω) ∈ B} ⊂ Ω is an element of F .
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3.1.2 Probability and distributions of random variables

• For each t ∈ T, can construct probability distribution/measure µt of random variable θt:

◦ given a set B ∈ B(Θ), µt(B) is the probability that θt ∈ B

◦ straightforward to construct µt by defining the image measure

µt(B) = P
(

θ−1
t (B)

)

= P ({ω ∈ Ω|θt(ω) ∈ B}) (81)

◦ mapping µt : B(Θ) −→ [0, 1] is indeed a probability measure on (Θ,B(Θ)) and
called the probability distribution of θt

◦ if Θ = R, there is a one-to one correspondence between distribution µt and the
distribution function Ft(b) := µt(]−∞, b]), b ∈ R. Similar result holds if N > 1.

• Analogously, construct joint distribution µI of random variables θI := (θt)t∈I for any I ⊂ T

• Further, can infer the distributions of random variables defined by measurable functions

◦ f : Θ −→ X ⊂ RM of θt

◦ f : ΘI −→ X ⊂ RM of θI

with values in the measurable space (X,B(X))
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3.2 Constructing the underlying probability space

• Previous result: Given (Ω,F ,P) and measurable mappings (θt)t, can compute probability
distributions of all random variables (θt)t∈I, I ⊂ T and of all measurable functions of these
random variables

• Can also reverse the previous construction:

◦ specify distributions/dependence structure of the random variables (θt)t∈T

◦ construct an underlying probability space (Ω,F ,P) consistent with this.

3.2.1 Example 1: Independent random variables

• Suppose we want (θt)t≥0 to consist of independent random variables wit values in Θ each
having a desired probability distribution µ : B(Θ) −→ [0, 1], say, a normal distribution.

• In this case, define:

◦ Ω = ΘT (the set of sequences with values in Θ)

◦ F = B(Ω) (the product σ-algebra generated by measurable rectangles or, equiva-
lently, the Borel σ-algebra when Ω is endowed with the product topology)

◦ P = µT (the product measure which satisfies µT(Ω × . . .× Ω × A × B × Ω× . . .) =
µ(A) · µ(B) for any A,B ∈ B(Θ) )
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3.2.2 Example 2: Correlated random variables

• Suppose we want (θt)t∈T to follow an auto-regressive structure of the form

θt = Mθt−1 + εt, t ≥ 1, (82)

where M ∈ RN×N and (εt)t≥1 consists of i.i.d. random variables with values in E ⊂ RN

and distribution µε which are independent of θ0 which has distribution µ0.

• In this case, can also construct (Ω,F ,P) by defining Ω = Θ×EN, F = B(Ω), P = µ0⊗µN
ε .

• Noting that θt = Atθ0 +
∑t−1

n=0M
nεt−n we can compute µt for each t > 0 via (81)

• For later reference, note that (121) defines a transition probability, i.e., a mapping Q :
Θ× B(Θ) −→ [0, 1] such that Q(θ, A) is the probability that θt+1 ∈ A given that θt = θ

• For all θ ∈ Θ and A ∈ B(Θ), Q can explicitly be constructed as

Q(θ, A) = µε{ε ∈ E|Mθ + ε ∈ A} (83)

• The distributions (µt)t∈T can then be computed recursively for t ≥ 1 as

µt(B) =

∫

Θ

Q(θ, B)µt−1(dθ). (84)

for each B ∈ B(Θ).
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3.3 Filtration and conditional expectation

• Let (θt)t≥0 be the exogenous stochastic process on (Ω,F ,P) defined previously.

• In our equilibrium framework derived below, all endogenous variables will take the form of
random variables (Xt)t≥0 with values in X ⊂ RM which depend on the exogenous process.

• We generally take the notation (Xt)t≥0 to mean that Xt is observable in period t, i.e., can
only depend on exogenous random variables θn, n ≤ t.

• To impose this restriction formally, define a filtration (Ft)t≥0 where Ft ⊂ F is the
smallest σ-algebra such that each θn, 0 ≤ n ≤ t is Ft-B(Θ) measurable.

• Process (Xt)t∈T is said to be adapted (to (Ft)t≥0) if each Xt is Ft − B(X) measurable.
This captures exactly the idea that Xt can depend only on random variables θn, n ≤ t

• Specifically, if (Xt)t∈T is adapted and Et[·] := E[·|Ft] is the expectations operator condi-
tional on observations up to time t, Et[Xn] = Xn for all t and n ≤ t.

• IfXt has distribution µXt
: B(X) −→ [0, 1] and is integrable, its unconditional expectation

is defined as

E[Xt] :=

∫

Ω

Xt(ω)P(dω) =

∫

X

xµXt
(dx). (85)
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4 Stochastic decision problems with finite horizon

4.1 A stochastic OLG model

• Consider a stochastic version of the OLG model from Section 1.6 similar to Wang (1993):

◦ all assumptions on population structure, labor supply, etc. remain the same

◦ but: production side modified to incorporate random production shocks

• We continue to denote equilibrium variables as (Xt)t≥0 but these are now adapted stochas-
tic processes rather than just sequences.

• All equalities and inequalities involving random variables are assumed to hold P-almost
surely without explicit notice.
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4.1.1 Production side

• Suppose that production in period t is subject to multiplicative shock θt ∈ Θ ⊂ R++:

Yt = θtF (Kt, Lt) = θtLtf(kt) (86)

• Production shocks (θt)t≥0 consists of independent random variables with distribution µ
and values in Θ = [θmin, θmax] ⊂ R++.

• Thus, we can chose the underlying probability space (Ω,F ,P) exactly as outlined in
Section 3.2.1

• In each period t, the firm takes the current shock in period t as given and decides on
demand for capital and labor.

• Continue to impose Assumption 1.3 on f and define kt =
Kt

Lt

for all t ∈ T as before.

• The fist order conditions then determine equilibrium factor prices as:

wt = W(kt, θt) := θt[f(kt)− ktf
′(kt)] (87a)

Rt = R(kt, θt) := θtf
′(kt) (87b)
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4.1.2 A stochastic two-period decision problem

• Consider decision problem of a young consumer in period t ≥ 0:

◦ consumer observes her current labor income wt > 0 (which is a real number)

◦ capital return Rt+1 treated as random variable with values in [Rmin, Rmax] ⊂ R++

◦ knowing the underlying probabilistic structure, consumer computes correct condi-
tional expectation Et[·] of next period’s random variables

• Any investment decision st ∈ [0, wt] (which is a number!) determines lifetime consumption

cyt = wt − st (88a)

cot+1 = Rt+1st (88b)

where cyt ≥ 0 is a number and cot+1 a random variable with values in [stRmin, stRmax].

• Preferences over alternative random variables (cyt , c
o
t+1)possess an expected utility repre-

sentation with von-Nemann Morgenstern utility U(cy, co) = u(cy) + βu(co)

• Decision problem reads:

max
s

{

u(wt − s) + βEt [u(sRt+1)] | 0 ≤ s ≤ wt

}

(89)
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• Define consumer’s objective function Ut :]0, wt[−→ R,

Ut(s) := u(wt − s) + βEt [u(sRt+1)] (90)

• Imposing Assumption 1.2 on utility u, we obtain the following result:

Lemma 4.1 Under Assumption 1.2, the following holds:

(i) Ut in (90) is C2, strictly concave, and limsց0U
′
t(s) = − limsրwt

U ′
t(s) = −∞

(ii) Problem (89) has a unique interior solution s∗t determined by

u′(wt − s) = βEt [Rt+1u
′(sRt+1)] (91)

• Hint: When proving this result, exploit that in the present case, differentiation can be
interchanged with the expectations operator
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4.1.3 Deriving the equilibrium equations

• Aggregate investment made at time t determines next periods’s capital stock Kt+1 = Nst

• Defining kt+1 = Kt+1/N , (91) can be written as:

u′(wt − kt+1) = βEt [Rt+1u
′(kt+1Rt+1)] (92)

• Observations:

◦ by (87b), next period’s capital return determined by Rt+1 = θt+1f
′(kt+1)

◦ uncertainty in Rt+1 completely due uncertainty about shock which has distribution
µ independent of any other realizations at time t

◦ this permits (92) to be written as:

u′(wt − kt+1) = βEµ [R(kt+1, ·)u
′(kt+1R(kt+1, ·))] (93)

= β

∫

Θ

R(kt+1, θ)u
′(kt+1R(kt+1, θ))µ(dθ).

• Consumption of both generations in t satisfies:

cyt = wt − kt+1 (94a)

cot = Rtkt. (94b)
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4.1.4 Equilibrium

• Stochastic OLG economy is summarized by the list ESOLG = 〈u, β, f, µ〉

• Following definition of equilibrium is straightforward generalization of deterministic case.

Definition 4.1 Given k0 > 0, an equilibrium of ESOLG consists of adapted stochastic processes
of prices (we

t , R
e
t )t≥0 and an allocation (ke

t+1, c
y,e
t , co,et )t≥0 satisfying (87), (93), and (94) for all

t ≥ 0.

• Questions as in the deterministic case:

◦ existence of equilibrium?

◦ uniqueness of equilibrium?

◦ dynamic behavior of equilibrium?

• To answer them, will again derive recursive structure of equilibrium.
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4.1.5 Recursive structure of equilibrium

• Following ideas exactly analogous to deterministic case studied in Section 1.6.5

• Given k > 0 and θ ∈ Θ, define for each 0 < k+ < W(k, θ) the function

H(k+; k, θ) := u′(W(k, θ)− k+)− βEµ [R(k+, ·) u
′(k+R(k+, ·))] . (95)

• Equilibrium process (ke
t+1)t≥0 solves H(kt+1; kt, θt) = 0 for all t ≥ 0 and determines all

other equilibrium variables

• Following auxiliary result can be proved exactly as in the deterministic case:

Lemma 4.2 Under Assumptions 1.2 and 1.3, the following holds:

(i) The function H(·; k, θ) defined in (95) has at least one zero for all k > 0 and θ ∈ Θ.

(ii) If, in addition either (a) or (b) of Assumption hold, this zero is unique.
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• Lemma 4.2 allows us to state the following main result:

Proposition 4.1 Under Assumptions 1.2 and 1.3, the following holds for all k0 > 0:

(i) Economy ESOLG has at least one equilibrium.

(ii) If, in addition, either (a) or (b) of Assumption 1.4 hold, this equilibrium is unique.

• Observations:

◦ additional restrictions ensure existence of a map K : R++ × Θ −→ R++ which
determines the unique solution k+ = K(k, θ) to (34) for each k > 0 and θ ∈ Θ

◦ by the implicit function theorem, K is C1, strictly increasing, and satisfies

0 < K(k, θ) < W(k, θ) < f(k, θ). (96)

◦ unique equilibrium process (ke
t+1)t≥0 determined recursively by

ke
t+1 = K(ke

t , θt). (97)

• To study equilibrium dynamics, need some basic concepts from stochastic dynamical
systems theory
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5 Stochastic dynamical systems in discrete time

5.1 Stochastic dynamical systems and stability

• For more details, the reader is again referred to Stachurski (2009).

• Assume that endogenous state dynamics take the form F : X×Θ −→ X

xt+1 = F (xt, θt) (98)

where we now restrict attention to case where X = R+

• Also assume that exogenous process is i.i.d. with distribution µθ and values in Θ =
[θmin, θmax] ⊂ R++

• In the deterministic case, the state xt in period t is a real number

• In the stochastic case, the state xt in period t is a random variable which is completely
described by its distribution µt : B(X) −→ [0, 1]

• Thus, a steady state in the stochastic case is a distribution µ̄ (or a random variable x̄
which has this distribution) which remains invariant under (98).

• Thus, to compute a stochastic steady state of (98), we need to derive how the sequence
of distributions (µt)t≥0 of the random variables (xt)t≥0 evolve over time
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5.2 Markov operator

• Suppose x0 has distribution µ0, what is the distribution µt of xt for any t ≥ 1?

• As in Section 3.2.2, note that (98) defines a transition probability, i.e., a mapping Q :
X×B(X) −→ [0, 1] such that Q(x,A) is the probability that xt+1 ∈ A given that xt = x

• For all x ∈ X and A ∈ B(X), Q can explicitly be constructed as

Q(x,A) = µθ{θ ∈ Θ|F (x, θ) ∈ A} (99)

• The distributions (µt)t∈T can then be computed recursively for t ≥ 1 as

µt(B) =

∫

X

Q(x,B)µt−1(dx). (100)

for each B ∈ B(X).

• Let M (X) denote the class of probability measures on B(X)

• Then, can define an operator T : M (X) −→ M (X) which associates with any µ ∈ M (X)
the new probability measure Tµ defined for each B ∈ B(X) as

Tµ(B) =

∫

X

Q(x,B)µ(dx). (101)
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5.3 Stochastic steady states

• The concept of an invariant distribution is now straightforward:

Definition 5.1 An steady state of the stochastic dynamical system (98) is a probability
distribution µ̄ ∈ M (X) which is a fixed point of T , i.e., T µ̄ = µ̄.

• The stochastic analog of a steady state is therefore an invariant probability distribution

• Large literature which studies existence of invariant distributions for Markov operators

• Notion of stability requires limt→∞ T tµ0 = µ̄ where the limiting operation requires a
suitable notion of convergence of measures (most results on stability use the concept of
weak convergence, see Stokey & Lucas (1989)).

• Very general conditions for existence/uniqueness/stablity of invariant distributions if F
resp. T has certain monotonicity properties in Kamihigashi & Stachurski (2014)

• There is also a theory of Random Dynamical Systems due to Arnold (1998) which defines
the concept of a random fixed point.

• See Schenk-Hoppé & Schmalfuss (2001) for an economic application of this theory and
how it relates to the previous concepts
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5.4 Equilibrium dynamics in the stochastic OLG model

5.4.1 Stable sets

• Consider existence of stochastic steady states/invariant distributions of economy ESOLG

• Existence of stochastic steady states follows from the existence of stable sets :

Definition 5.2 A stable set of (97) is an interval [kmin, kmax] ⊂ R++ such that:

(i) K(kmin, θmin) = kmin

(ii) K(kmax, θmax) = kmax

(iii) K(k, θmin) < k < K(k, θmax) for all k ∈ [kmin, kmax]

• Existence of a stable set non-trivial steady state k̄ > 0 not guaranteed, fails if

K(k, θmax) < k (102)

for all k > 0 (impoverishment).

• Sufficient condition to exclude this and ensure existence is

lim
kց0

K′(k, θmin) > 1. (103)
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5.4.2 Existence of a stochastic steady state

• Following existence result due to Wang (1993):

Proposition 5.1 (Wang (1993)) If the equilibrium map K from (97) satisfies condition
(103), there exists at least one stochastic steady state/invariant probability distribution.

• Uniqueness of a stable sets not guaranteed, same multiplicity problem as in the deter-
ministic case.

• Uniqueness obtains, however, if for all θ ∈ Θ, K(·, θ) has a unique fixed point.

• This is a special case of the more general concept of a stable fixed point configuration
(cf. Brock & Mirman (1972)). Essentially, this requires that the largest fixed point of
K(·, θmin) be smaller than the smallest fixed point of K(·, θmax) (cf. the illustrations pro-
vided in class).

• Much more general existence results on stochastic steady states that also hold for a
much larger class of OLG economies can be found, e.g., in Morand & Reffett (2007) and
McGovern, Morand & Reffett (2013).
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6 Stochastic decision problems with infinite horizon

6.1 A prototype decision problem

• Consider the problem as in Section 2.2 with T := {0, 1, 2, . . .} but now with uncertainty

• In particular, we now:

◦ abstract from loans by requiring st ≥ 0.

◦ include the consumer’s labor-leisure choice ht ∈ [0, h̄] which determines labor supply

• Remainder normalizes maximum labor to h̄ = 1.
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6.1.1 Decision setup

• Given variables:

◦ adapted stochastic process of wages w∞ = (wt)t∈T

◦ adapted stochastic process of capital returns R∞ = (Rt)t∈T

◦ initial capital s̄−1 ≥ 0

• Decision variables:

◦ consumption plan: adapted stochastic process (ct)t∈T ≥ 0, ct ≥ 0 ∀t

◦ investment plan: adapted stochastic process (st)t∈T, st ≥ 0 ∀t

◦ labor supply plan: adapted stochastic process (ht)t∈T, 0 ≤ ht ≤ h̄ ∀t
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6.1.2 Intertemporal budget set

• Feasible plans must satisfy period budget equation

ct + st ≤ wtht +Rtst−1 (104)

for all t ∈ T where s−1 = s̄−1

• Feasible plans are defined by budget set:

B(w∞, R∞, s̄−1) =
{

(ct, ht, st)t∈T| ct ≥ 0, 0 ≤ ht ≤ 1, st ≥ 0, (104) holds for all t ∈ T

}

(105)
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6.1.3 Preferences and decision problem

• Utility in period t now depends on consumption ct ≥ 0 and leisure 0 ≤ ht ≤ 1 and given
by utility function

u : R+ × [0, ] −→ R, (c, h) 7→ u(c, h) (106)

• Preferences over consumption-labor processes (ct, ht)t∈T represented by utility function

U((ct, ht)t∈T) := E0

[

∞
∑

t=0

βtu(ct, ht)

]

, 0 < β < 1. (107)

• Decision problem:

max
{

U((ct, ht)t∈T)
∣

∣

∣
(ct, ht, st)t∈T ∈ B(e∞, R∞, s̄−1)

}

. (108)

Assumption 6.1 The utility function u in (106) is continuous, strictly concave and C2 on the
interior of its domain with partial derivatives satisfying

∂ccu < 0 < ∂cu and lim
cց0

∂cu(c, h) = ∞ (109a)

∂hhu < 0 < −∂hu and lim
hր1

∂hu(c, h) = −∞. (109b)
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6.2 Solving the decision problem

• Following derivations impose Assumption 6.1

• Then, any solution to (108) will be interior, i.e., c∗t > 0 and 0 < h∗
t < 1 due to (109)

• Can again use a variational argument to obtain following equations which characterize
solution

• For each t ≥ 0 and conditional on Ft, solution to (108) must satisfy the intratemporal
optimality condition

−
∂hu(ct, ht)

∂cu(ct, ht)
= wt (110)

and the intertemporal optimality condition (Euler equation)

Et

[

Rt+1
β∂cu(ct+1, ht+1)

∂cu(ct, ht)

]

= 1. (111)

• Further, for all t ≥ 0, the budget equality

ct + st = wtht +Rtst−1 (112)
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holds and the stochastic transversality condition (STVC)

lim
T→∞

E0

[

sT

T
∏

t=0

R−1
t

]

= 0. (113)

• Remarks:

◦ that any process (c∗t , s
∗
t , h

∗
t )t∈T ∈ B(e∞, R∞, s̄−1) satisfying (110), (111), (112) for all

t ∈ T as well as (113) is indeed a solution to (108) can be proved along the lines of the
proof of Proposition 2.3 done in class (exploiting the law of iterated expectations!).

◦ one can also show by using the same arguments as in the proof of Proposition 2.3
that the solution to (108) is P-a.s. unique.

◦ we could also - somewhat mechanically - have used a Lagrangian approach to obtain
the previous conditions, but it is not quite clear how derivatives conditional on Ft

should be interpreted.
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6.3 An equilibrium framework: The RBC model

• Consider a stochastic version of the neoclassical growth model from Section 2.4 with
endogenous labor supply:

◦ production side modified to incorporate random production shocks

◦ consumer side modified to include labor-leisure choice, decision problem solved under
uncertainty as in Section 6.1

◦ unless stated otherwise, all other assumptions remain the same as in Section 2.4

• We continue to denote equilibrium variables as (Xt)t≥0 but these are now adapted stochas-
tic processes rather than just sequences.

• All equalities and inequalities involving random variables are assumed to hold P-almost
surely without explicit notice.
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6.3.1 Consumer side

• As in deterministic case, N identical consumers who each

◦ plan over infinitely many future periods T = {0, 1, 2, . . .}

◦ consume ct and invest st in period t

◦ supply ht units of labor in period t, now determined endogenously

◦ capital earns return Rt, labor the wage wt in t

• Decision problem exactly as in Section 6.1

• As consumers are identical, so are the decisions they take!

• At the aggregate level, factor supply in period t ≥ 0 given by

Lt = Nht (114)

Kt = Nst−1 (115)

and capital per capita kt := Kt/N evolves as

kt = st−1, t ≥ 1. (116)
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• Optimal decision satisfies the conditions:

ct + kt+1 = wtht +Rtkt (117a)

−
∂hu(ct, ht)

∂cu(ct, ht)
= wt (117b)

Et

[

Rt+1
β∂cu(ct+1, ht+1)

∂cu(ct, ht)

]

= 1 (117c)

and the stochastic transversality condition (STVC)

lim
T→∞

E0

[

kT+1

T
∏

t=0

R−1
t

]

= 0. (118)

87



6.3.2 Production side

• Suppose that (net) production in period t is subject to multiplicative shock θt ∈ Θ ⊂ R++

such that total output (including non-depreciated capital) is given by:

Yt = eθtF (Kt, Lt) + (1− δ)Kt = N
[

eθthtf(kt/ht) + (1− δ)kt
]

(119)

• Continue to assume linear homogeneity of F and impose Assumption 1.3 on f .

• Using (114) and (115) and linear homogeneity, per capita output yt := Yt/N given by

yt = eθtF (kt, ht) + (1− δ)kt = eθthtf(kt/ht) + (1− δ)kt (120)

• Production shocks (θt)t≥0 follow an AR(1)-process of the form

θt = ρθt−1 + εt (121)

where 0 ≤ ρ < 1 and (εt)t≥0 consist of i.i.d. random variables with distribution µε

• Thus, we can chose the underlying probability space (Ω,F ,P) and construct transition
probability Q induced by (121) exactly as outlined in Section 3.2.2
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• In each period t, the firm takes the current shock in period t as given and decides on
demand for capital and labor.

• The fist order conditions then determine equilibrium factor prices as:

wt = W(kt, ht, θt) := eθt∂hF (kt, ht) (122a)

= eθt [f(kt/ht)− kt/htf
′(kt/ht)]

Rt = R(kt, ht, θt) := eθt∂kF (kt, ht) + (1− δ) (122b)

= eθtf ′(kt/ht) + 1− δ

• Remark:

◦ in the deterministic case, non-depreciated capital was included in F resp. f which
had the interpretation of a gross production function

◦ here, we interpret F resp. f as a net production function and must, therefore, ex-
plicitly keep track of non-depreciated capital

◦ the reason is that only net production output is affected by the shock.
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6.4 Equilibrium

• Economy is summarized by the list ERBC = 〈u, β,N, f, Q〉 plus initial conditions k0 > 0
and θ0 ∈ Θ

Definition 6.1 Given k0 > 0 and θ0 ∈ Θ, an equilibrium of ERBC is an allocation (cet , h
e
t , k

e
t+1)t≥0

and a price sequence (we
t , R

e
t )t≥0 which satisfy (117) and (122) for all t ≥ 0 and (118).

• Can again use an equivalent planning problem to determine the (unique) equilibrium
allocation

• Equilibrium prices then follow directly from (122) for all t ≥ 0.
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6.5 A stochastic planning problem

• Consider a benevolent social planner who maximizes consumer utility by choosing a fea-
sible allocation.

Definition 6.2 Given k0 > 0 and θ0 ∈ Θ, a feasible allocation is an adapted stochastic
process (ct, ht, kt+1)t≥0 which satisfies ct ≥ 0, 0 ≤ ht ≤ 1, kt+1 ≥ 0 for all t ≥ 0 as well as
the resource constraint

kt+1 + ct ≤ eθtF (kt, ht) + (1− δ)kt. (123)

The set of feasible allocations is denoted A(k0, θ0).

• The planning problem reads:

max
(ct,ht,kt+1)t∈T

{

U((ct, ht)t∈T)
∣

∣

∣
(ct, ht, kt+1)t∈T ∈ A(k0, θ0)

}

(124)

• As in the deterministic case, can compute the equations that characterize the solution to
(124)

• Can show that these coincide with the equilibrium equations derived above.

• Thus, the solution to (68) also constitutes an equilibrium allocation!
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6.6 Solving the stochastic planning problem by recursive methods

6.6.1 The Bellman equation

• Motivation for the following approach is analogous to the deterministic case

• Basic idea: Exploit the recursive structure of SPP

• Assume that f satisfies Assumption 1.3 and u Assumption 6.1 and 0 < β < 1

• For brevity, set

M(k, h, θ) := eθF (k, h) + (1− δ)k (125)

• In the present stochastic setup, the Bellmann equation reads:

V (k, θ) = max
k+≥0,0≤h≤1

{

u(M(k, h, θ)− k+, h) + β

∫

Θ

V (k+, θ+)Q(θ, dθ+) | k+ ≤ M(k, h, θ)
}

(126)
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6.6.2 Policy function

• Having computed the value function V , suppose the maximizing solution (k∗
+, h

∗) in (126)
is well-defined and unique for each (k, θ) ∈ R++ ×Θ

• Define the policy function g = (gk, gh) : R++ ×Θ −→ R+ × [0, 1]

g(k, θ) = arg max
k+≥0,0≤h≤1

{

u(M(k, h, θ)− k+, h) + β

∫

Θ

V (k+, θ+)Q(θ, dθ+) | k+ ≤ M(k, h, θ)
}

Lemma 6.1 Let V be the unique solution to (126) and g = (gk, gh) be defined as above. Then,
for each (k0, z0) the sequence {c⋆t , h

⋆
t , k

⋆
t+1}t≥0 defined recursively as k⋆

0 = k0,

k⋆
t+1 = gk(k

⋆
t , θt)

h⋆
t = gh(k

⋆
t , θt)

c⋆t = M(k⋆
t , h

⋆
t , θt)− k⋆

t+1

for all t ≥ 0 is a solution to (124).
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6.7 Equilibrium dynamics in the RBC model

• Consequences of previous results:

◦ dynamics completely described by the endogenous state variable {k⋆
t }t≥0 and the

exogenous process {θt}t≥0

◦ analogously to stochastic OLG model, can analyze dynamics, existence of invariant
distributions, etc.

◦ in general, mapping gk(·; θ) has a unique steady state k̄θ for all θ ∈ Θ
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