Mathematical Methods, Part 1: Applied Intertemporal Optimization

Part II

Winter term 2015/16

Lecturer: Marten Hillebrand Teaching assistant: Van Hoang Khieu

Part II Stochastic Models in Discrete Time

3 Setting up a random environment

- In a stochastic world, all quantities take the form of random variables
- We will first review some basic concepts from probability theory required for our purposes
- Following structure is very condensed. You are strongly encouraged to consult Stachurski (2009) for a more in-depth treatment.
- In the sequel we work with infinite discrete time periods $\mathbb{T} = \{0, 1, 2, \ldots\}$.
- If A is any set, 2^A or Pow(A) denotes the power set, i.e., the class of all subsets of A.

3.1 Basic concepts from probability theory

- 3.1.1 Probability spaces and random variables
 - Randomness in our model enters via an exogenous stochastic process $(\theta_t)_{t\geq 0}$, i.e., a sequence of random variables with values in $\Theta \subset \mathbb{R}^N$, $N \geq 1$.
 - All these random variables live on an underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$, where:
 - $\circ~\Omega$ is the sample space which represents all possible states of the world
 - $\mathscr{F} \subset \operatorname{Pow}(\Omega)$ is a collection of subsets of Ω that form a σ -algebra, i.e., (i) $\Omega \in \mathscr{F}$, (ii) $A \in \mathscr{F}$ implies $A^c := \Omega \setminus A \in \mathscr{F}$ and (iii) $(A_n)_{n \geq 0}, A_n \in \mathscr{F} \forall n$ implies $\cup_{n=0}^{\infty} A_n \in \mathscr{F}$.
 - $\mathbb{P}: \mathscr{F} \longrightarrow [0,1]$ is a probability measure, i.e., a countably additive function satisfying $\mathbb{P}(\Omega) = 1$ that assigns probabilities $\mathbb{P}(A)$ to each measurable subset $A \in \mathscr{F}$ of Ω
 - Θ is endowed with some σ -algebra $\mathscr{A} \subset \operatorname{Pow}(\Theta)$ to become a measurable space (Θ, \mathscr{A})
 - Since $\Theta \subset \mathbb{R}^N$ is a topological space, we can (and typically do) choose for \mathscr{A} the Borel- σ algebra $\mathscr{B}(\Theta)$ which is the smallest σ -algebra containing the topology
 - For each $t \in \mathbb{T}$, the mapping $\theta_t : \Omega \longrightarrow \Theta$ is $\mathscr{F} \mathscr{B}(\Theta)$ measurable, i.e., for all $B \in \mathscr{B}(\Theta)$, $\theta_t^{-1}(B) := \{\omega \in \Omega | \theta_t(\omega) \in B\} \subset \Omega$ is an element of \mathscr{F} .

3.1.2 Probability and distributions of random variables

• For each $t \in \mathbb{T}$, can construct probability distribution/measure μ_t of random variable θ_t :

• given a set $B \in \mathscr{B}(\Theta)$, $\mu_t(B)$ is the probability that $\theta_t \in B$

 \circ straightforward to construct μ_t by defining the *image measure*

$$\mu_t(B) = \mathbb{P}\left(\theta_t^{-1}(B)\right) = \mathbb{P}\left(\{\omega \in \Omega | \theta_t(\omega) \in B\}\right)$$
(81)

- mapping $\mu_t : \mathscr{B}(\Theta) \longrightarrow [0,1]$ is indeed a probability measure on $(\Theta, \mathscr{B}(\Theta))$ and called the probability distribution of θ_t
- if $\Theta = \mathbb{R}$, there is a one-to one correspondence between distribution μ_t and the distribution function $F_t(b) := \mu_t(] \infty, b]$, $b \in \mathbb{R}$. Similar result holds if N > 1.
- Analogously, construct joint distribution $\mu_{\mathbb{I}}$ of random variables $\theta_{\mathbb{I}} := (\theta_t)_{t \in \mathbb{I}}$ for any $\mathbb{I} \subset \mathbb{T}$
- Further, can infer the distributions of random variables defined by measurable functions

 $\circ f: \Theta \longrightarrow \mathbb{X} \subset \mathbb{R}^M \text{ of } \theta_t$ $\circ f: \Theta^{\mathbb{I}} \longrightarrow \mathbb{X} \subset \mathbb{R}^M \text{ of } \theta_{\mathbb{I}}$

with values in the measurable space $(\mathbb{X}, \mathscr{B}(\mathbb{X}))$

3.2 Constructing the underlying probability space

- Previous result: Given $(\Omega, \mathscr{F}, \mathbb{P})$ and measurable mappings $(\theta_t)_t$, can compute probability distributions of all random variables $(\theta_t)_{t \in \mathbb{I}}$, $\mathbb{I} \subset \mathbb{T}$ and of all measurable functions of these random variables
- Can also reverse the previous construction:
 - specify distributions/dependence structure of the random variables $(\theta_t)_{t\in\mathbb{T}}$
 - construct an underlying probability space $(\Omega, \mathscr{F}, \mathbb{P})$ consistent with this.

3.2.1 Example 1: Independent random variables

- Suppose we want $(\theta_t)_{t\geq 0}$ to consist of independent random variables wit values in Θ each having a desired probability distribution $\mu : \mathscr{B}(\Theta) \longrightarrow [0, 1]$, say, a normal distribution.
- In this case, define:
 - $\Omega = \Theta^{\mathbb{T}}$ (the set of sequences with values in Θ)
 - $\mathscr{F} = \mathscr{B}(\Omega)$ (the product σ -algebra generated by measurable rectangles or, equivalently, the Borel σ -algebra when Ω is endowed with the product topology)
 - $\mathbb{P} = \mu^{\mathbb{T}}$ (the product measure which satisfies $\mu^{\mathbb{T}}(\Omega \times \ldots \times \Omega \times A \times B \times \Omega \times \ldots) = \mu(A) \cdot \mu(B)$ for any $A, B \in \mathscr{B}(\Theta)$)

3.2.2 Example 2: Correlated random variables

• Suppose we want $(\theta_t)_{t\in\mathbb{T}}$ to follow an auto-regressive structure of the form

$$\theta_t = M\theta_{t-1} + \varepsilon_t, \quad t \ge 1, \tag{82}$$

where $M \in \mathbb{R}^{N \times N}$ and $(\varepsilon_t)_{t \geq 1}$ consists of i.i.d. random variables with values in $\mathcal{E} \subset \mathbb{R}^N$ and distribution μ_{ε} which are independent of θ_0 which has distribution μ_0 .

- In this case, can also construct $(\Omega, \mathscr{F}, \mathbb{P})$ by defining $\Omega = \Theta \times \mathcal{E}^{\mathbb{N}}, \mathscr{F} = \mathscr{B}(\Omega), \mathbb{P} = \mu_0 \otimes \mu_{\varepsilon}^{\mathbb{N}}$.
- Noting that $\theta_t = A^t \theta_0 + \sum_{n=0}^{t-1} M^n \varepsilon_{t-n}$ we can compute μ_t for each t > 0 via (81)
- For later reference, note that (121) defines a transition probability, i.e., a mapping $Q : \Theta \times \mathscr{B}(\Theta) \longrightarrow [0,1]$ such that $Q(\theta, A)$ is the probability that $\theta_{t+1} \in A$ given that $\theta_t = \theta$
- For all $\theta \in \Theta$ and $A \in \mathscr{B}(\Theta)$, Q can explicitly be constructed as

$$Q(\theta, A) = \mu_{\varepsilon} \{ \varepsilon \in \mathcal{E} | M\theta + \varepsilon \in A \}$$
(83)

• The distributions $(\mu_t)_{t\in\mathbb{T}}$ can then be computed recursively for $t\geq 1$ as

$$\mu_t(B) = \int_{\Theta} Q(\theta, B) \mu_{t-1}(d\theta).$$
(84)

for each $B \in \mathscr{B}(\Theta)$.

3.3 Filtration and conditional expectation

- Let $(\theta_t)_{t\geq 0}$ be the exogenous stochastic process on $(\Omega, \mathscr{F}, \mathbb{P})$ defined previously.
- In our equilibrium framework derived below, all endogenous variables will take the form of random variables $(X_t)_{t\geq 0}$ with values in $\mathbb{X} \subset \mathbb{R}^M$ which depend on the exogenous process.
- We generally take the notation $(X_t)_{t\geq 0}$ to mean that X_t is observable in period t, i.e., can only depend on exogenous random variables θ_n , $n \leq t$.
- To impose this restriction formally, define a filtration $(\mathscr{F}_t)_{t\geq 0}$ where $\mathscr{F}_t \subset \mathscr{F}$ is the smallest σ -algebra such that each θ_n , $0 \leq n \leq t$ is $\mathscr{F}_t \cdot \mathscr{B}(\Theta)$ measurable.
- Process $(X_t)_{t\in\mathbb{T}}$ is said to be *adapted* (to $(\mathscr{F}_t)_{t\geq 0}$) if each X_t is $\mathscr{F}_t \mathscr{B}(\mathbb{X})$ measurable. This captures exactly the idea that X_t can depend only on random variables θ_n , $n \leq t$
- Specifically, if $(X_t)_{t\in\mathbb{T}}$ is adapted and $\mathbb{E}_t[\cdot] := \mathbb{E}[\cdot|\mathscr{F}_t]$ is the expectations operator conditional on observations up to time t, $\mathbb{E}_t[X_n] = X_n$ for all t and $n \leq t$.
- If X_t has distribution $\mu_{X_t} : \mathscr{B}(\mathbb{X}) \longrightarrow [0, 1]$ and is integrable, its unconditional expectation is defined as

$$\mathbb{E}[X_t] := \int_{\Omega} X_t(\omega) \mathbb{P}(d\omega) = \int_{\mathbb{X}} x \mu_{X_t}(dx).$$
(85)

4 Stochastic decision problems with finite horizon

4.1 A stochastic OLG model

- Consider a stochastic version of the OLG model from Section 1.6 similar to Wang (1993):
 - \circ all assumptions on population structure, labor supply, etc. remain the same
 - $\circ\,$ but: production side modified to incorporate random production shocks
- We continue to denote equilibrium variables as $(X_t)_{t\geq 0}$ but these are now adapted stochastic processes rather than just sequences.
- All equalities and inequalities involving random variables are assumed to hold P-almost surely without explicit notice.

4.1.1 Production side

• Suppose that production in period t is subject to multiplicative shock $\theta_t \in \Theta \subset \mathbb{R}_{++}$:

$$Y_t = \theta_t F(K_t, L_t) = \theta_t L_t f(k_t) \tag{86}$$

- Production shocks $(\theta_t)_{t\geq 0}$ consists of independent random variables with distribution μ and values in $\Theta = [\theta_{\min}, \theta_{\max}] \subset \mathbb{R}_{++}$.
- Thus, we can chose the underlying probability space $(\Omega, \mathscr{F}, \mathbb{P})$ exactly as outlined in Section 3.2.1
- In each period t, the firm takes the current shock in period t as given and decides on demand for capital and labor.
- Continue to impose Assumption 1.3 on f and define $k_t = \frac{K_t}{L_t}$ for all $t \in \mathbb{T}$ as before.
- The fist order conditions then determine equilibrium factor prices as:

$$w_t = \mathcal{W}(k_t, \theta_t) := \theta_t [f(k_t) - k_t f'(k_t)]$$
(87a)

$$R_t = \mathcal{R}(k_t, \theta_t) := \theta_t f'(k_t)$$
(87b)

4.1.2 A stochastic two-period decision problem

- Consider decision problem of a young consumer in period $t \ge 0$:
 - consumer observes her current labor income $w_t > 0$ (which is a real number)
 - capital return R_{t+1} treated as random variable with values in $[R_{\min}, R_{\max}] \subset \mathbb{R}_{++}$
 - knowing the underlying probabilistic structure, consumer computes correct conditional expectation $\mathbb{E}_t[\cdot]$ of next period's random variables
- Any investment decision $s_t \in [0, w_t]$ (which is a number!) determines lifetime consumption

$$c_t^y = w_t - s_t \tag{88a}$$

$$c_{t+1}^{o} = R_{t+1}s_t$$
 (88b)

where $c_t^y \ge 0$ is a number and c_{t+1}^o a random variable with values in $[s_t R_{\min}, s_t R_{\max}]$.

- Preferences over alternative random variables (c_t^y, c_{t+1}^o) possess an expected utility representation with von-Nemann Morgenstern utility $U(c^y, c^o) = u(c^y) + \beta u(c^o)$
- Decision problem reads:

$$\max_{s} \left\{ u(w_t - s) + \beta \mathbb{E}_t \left[u(sR_{t+1}) \right] \mid 0 \le s \le w_t \right\}$$
(89)

• Define consumer's objective function $U_t :]0, w_t[\longrightarrow \mathbb{R},$

$$U_t(s) := u(w_t - s) + \beta \mathbb{E}_t \left[u(sR_{t+1}) \right]$$
(90)

• Imposing Assumption 1.2 on utility u, we obtain the following result:

Lemma 4.1 Under Assumption 1.2, the following holds:

- (i) U_t in (90) is C^2 , strictly concave, and $\lim_{s \searrow 0} U'_t(s) = -\lim_{s \nearrow w_t} U'_t(s) = -\infty$
- (ii) Problem (89) has a unique interior solution s_t^* determined by

$$u'(w_t - s) = \beta \mathbb{E}_t \left[R_{t+1} u'(s R_{t+1}) \right]$$
(91)

• **Hint:** When proving this result, exploit that in the present case, differentiation can be interchanged with the expectations operator

4.1.3 Deriving the equilibrium equations

- Aggregate investment made at time t determines next periods's capital stock $K_{t+1} = Ns_t$
- Defining $k_{t+1} = K_{t+1}/N$, (91) can be written as:

$$u'(w_t - k_{t+1}) = \beta \mathbb{E}_t \left[R_{t+1} u'(k_{t+1} R_{t+1}) \right]$$
(92)

- Observations:
 - by (87b), next period's capital return determined by $R_{t+1} = \theta_{t+1} f'(k_{t+1})$
 - uncertainty in R_{t+1} completely due uncertainty about shock which has distribution μ independent of any other realizations at time t
 - \circ this permits (92) to be written as:

$$u'(w_t - k_{t+1}) = \beta \mathbb{E}_{\mu} \left[\mathcal{R}(k_{t+1}, \cdot) u'(k_{t+1} \mathcal{R}(k_{t+1}, \cdot)) \right]$$
(93)
$$= \beta \int_{\Theta} \mathcal{R}(k_{t+1}, \theta) u'(k_{t+1} \mathcal{R}(k_{t+1}, \theta)) \mu(d\theta).$$

• Consumption of both generations in t satisfies:

$$c_t^y = w_t - k_{t+1} \tag{94a}$$

$$c_t^o = R_t k_t. (94b)$$

4.1.4 Equilibrium

- Stochastic OLG economy is summarized by the list $\mathscr{E}_{SOLG} = \langle u, \beta, f, \mu \rangle$
- Following definition of equilibrium is straightforward generalization of deterministic case.

Definition 4.1 Given $k_0 > 0$, an equilibrium of \mathscr{E}_{SOLG} consists of adapted stochastic processes of prices $(w_t^e, R_t^e)_{t\geq 0}$ and an allocation $(k_{t+1}^e, c_t^{y,e}, c_t^{o,e})_{t\geq 0}$ satisfying (87), (93), and (94) for all $t \geq 0$.

- Questions as in the deterministic case:
 - $\circ~{\rm existence}$ of equilibrium?
 - uniqueness of equilibrium?
 - dynamic behavior of equilibrium?
- To answer them, will again derive recursive structure of equilibrium.

4.1.5 Recursive structure of equilibrium

- Following ideas exactly analogous to deterministic case studied in Section 1.6.5
- Given k > 0 and $\theta \in \Theta$, define for each $0 < k_+ < \mathcal{W}(k, \theta)$ the function

$$H(k_+;k,\theta) := u'(\mathcal{W}(k,\theta) - k_+) - \beta \mathbb{E}_{\mu} \left[\mathcal{R}(k_+,\cdot) \, u'(k_+\mathcal{R}(k_+,\cdot)) \right]. \tag{95}$$

- Equilibrium process $(k_{t+1}^e)_{t\geq 0}$ solves $H(k_{t+1}; k_t, \theta_t) = 0$ for all $t \geq 0$ and determines all other equilibrium variables
- Following auxiliary result can be proved exactly as in the deterministic case:

Lemma 4.2 Under Assumptions 1.2 and 1.3, the following holds:

- (i) The function $H(\cdot; k, \theta)$ defined in (95) has at least one zero for all k > 0 and $\theta \in \Theta$.
- (ii) If, in addition either (a) or (b) of Assumption hold, this zero is unique.

• Lemma 4.2 allows us to state the following main result:

Proposition 4.1 Under Assumptions 1.2 and 1.3, the following holds for all $k_0 > 0$:

- (i) Economy & SOLG has at least one equilibrium.
- (ii) If, in addition, either (a) or (b) of Assumption 1.4 hold, this equilibrium is unique.
- Observations:
 - additional restrictions ensure existence of a map $\mathcal{K} : \mathbb{R}_{++} \times \Theta \longrightarrow \mathbb{R}_{++}$ which determines the unique solution $k_+ = \mathcal{K}(k, \theta)$ to (34) for each k > 0 and $\theta \in \Theta$
 - by the implicit function theorem, \mathcal{K} is C^1 , strictly increasing, and satisfies

$$0 < \mathcal{K}(k,\theta) < \mathcal{W}(k,\theta) < f(k,\theta).$$
(96)

• unique equilibrium process $(k_{t+1}^e)_{t\geq 0}$ determined recursively by

$$k_{t+1}^e = \mathcal{K}(k_t^e, \theta_t). \tag{97}$$

• To study equilibrium dynamics, need some basic concepts from stochastic dynamical systems theory

5 Stochastic dynamical systems in discrete time

5.1 Stochastic dynamical systems and stability

- For more details, the reader is again referred to Stachurski (2009).
- Assume that endogenous state dynamics take the form $F:\mathbb{X}\times\Theta\longrightarrow\mathbb{X}$

$$x_{t+1} = F(x_t, \theta_t) \tag{98}$$

where we now restrict attention to case where $\mathbb{X} = \mathbb{R}_+$

- Also assume that exogenous process is i.i.d. with distribution μ_{θ} and values in $\Theta = [\theta_{\min}, \theta_{\max}] \subset \mathbb{R}_{++}$
- In the deterministic case, the state x_t in period t is a real number
- In the stochastic case, the state x_t in period t is a random variable which is completely described by its distribution $\mu_t : \mathscr{B}(\mathbb{X}) \longrightarrow [0, 1]$
- Thus, a steady state in the stochastic case is a distribution $\bar{\mu}$ (or a random variable \bar{x} which has this distribution) which remains invariant under (98).
- Thus, to compute a stochastic steady state of (98), we need to derive how the sequence of distributions $(\mu_t)_{t\geq 0}$ of the random variables $(x_t)_{t\geq 0}$ evolve over time

5.2 Markov operator

- Suppose x_0 has distribution μ_0 , what is the distribution μ_t of x_t for any $t \ge 1$?
- As in Section 3.2.2, note that (98) defines a *transition probability*, i.e., a mapping $Q : \mathbb{X} \times \mathscr{B}(\mathbb{X}) \longrightarrow [0, 1]$ such that Q(x, A) is the probability that $x_{t+1} \in A$ given that $x_t = x$
- For all $x \in \mathbb{X}$ and $A \in \mathscr{B}(\mathbb{X})$, Q can explicitly be constructed as

$$Q(x, A) = \mu_{\theta} \{ \theta \in \Theta | F(x, \theta) \in A \}$$
(99)

• The distributions $(\mu_t)_{t\in\mathbb{T}}$ can then be computed recursively for $t\geq 1$ as

$$\mu_t(B) = \int_{\mathbb{X}} Q(x, B) \mu_{t-1}(dx).$$
(100)

for each $B \in \mathscr{B}(\mathbb{X})$.

- Let $\mathscr{M}(\mathbb{X})$ denote the class of probability measures on $\mathscr{B}(\mathbb{X})$
- Then, can define an operator $T : \mathscr{M}(\mathbb{X}) \longrightarrow \mathscr{M}(\mathbb{X})$ which associates with any $\mu \in \mathscr{M}(\mathbb{X})$ the new probability measure $T\mu$ defined for each $B \in \mathscr{B}(\mathbb{X})$ as

$$T\mu(B) = \int_{\mathbb{X}} Q(x, B)\mu(dx).$$
(101)

5.3 Stochastic steady states

• The concept of an invariant distribution is now straightforward:

Definition 5.1 An steady state of the stochastic dynamical system (98) is a probability distribution $\bar{\mu} \in \mathscr{M}(\mathbb{X})$ which is a fixed point of T, i.e., $T\bar{\mu} = \bar{\mu}$.

- The stochastic analog of a steady state is therefore an invariant probability distribution
- Large literature which studies existence of invariant distributions for Markov operators
- Notion of stability requires $\lim_{t\to\infty} T^t \mu_0 = \bar{\mu}$ where the limiting operation requires a suitable notion of convergence of measures (most results on stability use the concept of weak convergence, see Stokey & Lucas (1989)).
- Very general conditions for existence/uniqueness/stablity of invariant distributions if F resp. T has certain monotonicity properties in Kamihigashi & Stachurski (2014)
- There is also a theory of *Random Dynamical Systems* due to Arnold (1998) which defines the concept of a random fixed point.
- See Schenk-Hoppé & Schmalfuss (2001) for an economic application of this theory and how it relates to the previous concepts

5.4 Equilibrium dynamics in the stochastic OLG model

5.4.1 Stable sets

- Consider existence of stochastic steady states/invariant distributions of economy \mathcal{E}_{SOLG}
- Existence of stochastic steady states follows from the existence of *stable sets*:

Definition 5.2 A stable set of (97) is an interval $[k_{\min}, k_{\max}] \subset \mathbb{R}_{++}$ such that:

- (i) $\mathcal{K}(k_{\min}, \theta_{\min}) = k_{\min}$
- (*ii*) $\mathcal{K}(k_{\max}, \theta_{\max}) = k_{\max}$

(*iii*) $\mathcal{K}(k, \theta_{\min}) < k < \mathcal{K}(k, \theta_{\max})$ for all $k \in [k_{\min}, k_{\max}]$

• Existence of a stable set non-trivial steady state $\bar{k} > 0$ not guaranteed, fails if

$$\mathcal{K}(k, \theta_{\max}) < k \tag{102}$$

for all k > 0 (impoverishment).

• Sufficient condition to exclude this and ensure existence is

$$\lim_{k \searrow 0} \mathcal{K}'(k, \theta_{\min}) > 1.$$
(103)

5.4.2 Existence of a stochastic steady state

• Following existence result due to Wang (1993):

Proposition 5.1 (Wang (1993)) If the equilibrium map \mathcal{K} from (97) satisfies condition (103), there exists at least one stochastic steady state/invariant probability distribution.

- Uniqueness of a stable sets not guaranteed, same multiplicity problem as in the deterministic case.
- Uniqueness obtains, however, if for all $\theta \in \Theta$, $\mathcal{K}(\cdot, \theta)$ has a unique fixed point.
- This is a special case of the more general concept of a stable fixed point configuration (cf. Brock & Mirman (1972)). Essentially, this requires that the largest fixed point of $\mathcal{K}(\cdot, \theta_{\min})$ be smaller than the smallest fixed point of $\mathcal{K}(\cdot, \theta_{\max})$ (cf. the illustrations provided in class).
- Much more general existence results on stochastic steady states that also hold for a much larger class of OLG economies can be found, e.g., in Morand & Reffett (2007) and McGovern, Morand & Reffett (2013).

6 Stochastic decision problems with infinite horizon

6.1 A prototype decision problem

- Consider the problem as in Section 2.2 with $\mathbb{T} := \{0, 1, 2, \ldots\}$ but now with uncertainty
- In particular, we now:
 - abstract from loans by requiring $s_t \ge 0$.
 - include the consumer's labor-leisure choice $h_t \in [0, \bar{h}]$ which determines labor supply
- Remainder normalizes maximum labor to $\bar{h} = 1$.

6.1.1 Decision setup

- Given variables:
 - adapted stochastic process of wages $w^{\infty} = (w_t)_{t \in \mathbb{T}}$
 - $\circ\,$ adapted stochastic process of capital returns $R^{\infty}=(R_t)_{t\in\mathbb{T}}$
 - \circ initial capital $\bar{s}_{-1} \ge 0$
- Decision variables:
 - consumption plan: adapted stochastic process $(c_t)_{t\in\mathbb{T}} \ge 0, c_t \ge 0 \ \forall t$
 - \circ investment plan: adapted stochastic process $(s_t)_{t\in\mathbb{T}},\,s_t\geq 0\,\,\forall t$
 - labor supply plan: adapted stochastic process $(h_t)_{t \in \mathbb{T}}, 0 \leq h_t \leq \bar{h} \forall t$

6.1.2 Intertemporal budget set

• Feasible plans must satisfy period budget equation

$$c_t + s_t \le w_t h_t + R_t s_{t-1} \tag{104}$$

for all $t \in \mathbb{T}$ where $s_{-1} = \bar{s}_{-1}$

• Feasible plans are defined by budget set:

$$\mathbb{B}(w^{\infty}, R^{\infty}, \bar{s}_{-1}) = \left\{ (c_t, h_t, s_t)_{t \in \mathbb{T}} | c_t \ge 0, 0 \le h_t \le 1, s_t \ge 0, (104) \text{ holds for all } t \in \mathbb{T} \right\}$$
(105)

6.1.3 Preferences and decision problem

• Utility in period t now depends on consumption $c_t \ge 0$ and leisure $0 \le h_t \le 1$ and given by utility function

$$u: \mathbb{R}_+ \times [0,] \longrightarrow \mathbb{R}, \ (c,h) \mapsto u(c,h)$$
(106)

• Preferences over consumption-labor processes $(c_t, h_t)_{t \in \mathbb{T}}$ represented by utility function

$$U((c_t, h_t)_{t \in \mathbb{T}}) := \mathbb{E}_0\left[\sum_{t=0}^{\infty} \beta^t u(c_t, h_t)\right], \quad 0 < \beta < 1.$$
(107)

• Decision problem:

$$\max\Big\{U((c_t, h_t)_{t\in\mathbb{T}})\Big|(c_t, h_t, s_t)_{t\in\mathbb{T}}\in\mathbb{B}(e^{\infty}, R^{\infty}, \bar{s}_{-1})\Big\}.$$
(108)

Assumption 6.1 The utility function u in (106) is continuous, strictly concave and C^2 on the interior of its domain with partial derivatives satisfying

$$\partial_{cc}u < 0 < \partial_c u$$
 and $\lim_{c \searrow 0} \partial_c u(c,h) = \infty$ (109a)

$$\partial_{hh}u < 0 < -\partial_h u$$
 and $\lim_{h \ge 1} \partial_h u(c,h) = -\infty.$ (109b)

6.2 Solving the decision problem

- Following derivations impose Assumption 6.1
- Then, any solution to (108) will be interior, i.e., $c_t^* > 0$ and $0 < h_t^* < 1$ due to (109)
- Can again use a variational argument to obtain following equations which characterize solution
- For each $t \ge 0$ and conditional on \mathscr{F}_t , solution to (108) must satisfy the intratemporal optimality condition

$$-\frac{\partial_h u(c_t, h_t)}{\partial_c u(c_t, h_t)} = w_t \tag{110}$$

and the intertemporal optimality condition (Euler equation)

$$\mathbb{E}_t \left[R_{t+1} \frac{\beta \partial_c u(c_{t+1}, h_{t+1})}{\partial_c u(c_t, h_t)} \right] = 1.$$
(111)

• Further, for all $t \ge 0$, the budget equality

$$c_t + s_t = w_t h_t + R_t s_{t-1} \tag{112}$$

holds and the stochastic transversality condition (STVC)

$$\lim_{T \to \infty} \mathbb{E}_0 \left[s_T \prod_{t=0}^T R_t^{-1} \right] = 0.$$
(113)

• Remarks:

- that any process $(c_t^*, s_t^*, h_t^*)_{t \in \mathbb{T}} \in \mathbb{B}(e^{\infty}, R^{\infty}, \bar{s}_{-1})$ satisfying (110), (111), (112) for all $t \in \mathbb{T}$ as well as (113) is indeed a solution to (108) can be proved along the lines of the proof of Proposition 2.3 done in class (exploiting the law of iterated expectations!).
- \circ one can also show by using the same arguments as in the proof of Proposition 2.3 that the solution to (108) is P-a.s. unique.
- we could also somewhat mechanically have used a Lagrangian approach to obtain the previous conditions, but it is not quite clear how derivatives conditional on \mathscr{F}_t should be interpreted.

6.3 An equilibrium framework: The RBC model

- Consider a stochastic version of the neoclassical growth model from Section 2.4 with endogenous labor supply:
 - $\circ~$ production side modified to incorporate random production shocks
 - $\circ~$ consumer side modified to include labor-leisure choice, decision problem solved under uncertainty as in Section 6.1
 - $\circ\,$ unless stated otherwise, all other assumptions remain the same as in Section 2.4 $\,$
- We continue to denote equilibrium variables as $(X_t)_{t\geq 0}$ but these are now adapted stochastic processes rather than just sequences.
- All equalities and inequalities involving random variables are assumed to hold \mathbb{P} -almost surely without explicit notice.

6.3.1 Consumer side

- As in deterministic case, N identical consumers who each
 - $\circ\,$ plan over infinitely many future periods $\mathbb{T}=\{0,1,2,\ldots\}$
 - \circ consume c_t and invest s_t in period t
 - \circ supply h_t units of labor in period t, now determined endogenously
 - capital earns return R_t , labor the wage w_t in t
- Decision problem exactly as in Section 6.1
- As consumers are identical, so are the decisions they take!
- At the aggregate level, factor supply in period $t \ge 0$ given by

$$L_t = Nh_t \tag{114}$$

$$K_t = N s_{t-1} \tag{115}$$

and capital per capita $k_t := K_t/N$ evolves as

$$k_t = s_{t-1}, \quad t \ge 1.$$
 (116)

• Optimal decision satisfies the conditions:

$$c_t + k_{t+1} = w_t h_t + R_t k_t \tag{117a}$$

$$-\frac{\partial_h u(c_t, h_t)}{\partial_c u(c_t, h_t)} = w_t \tag{117b}$$

$$\mathbb{E}_{t}\left[R_{t+1}\frac{\beta\partial_{c}u(c_{t+1},h_{t+1})}{\partial_{c}u(c_{t},h_{t})}\right] = 1$$
(117c)

and the stochastic transversality condition (STVC)

$$\lim_{T \to \infty} \mathbb{E}_0 \left[k_{T+1} \prod_{t=0}^T R_t^{-1} \right] = 0.$$
 (118)

6.3.2 Production side

• Suppose that (net) production in period t is subject to multiplicative shock $\theta_t \in \Theta \subset \mathbb{R}_{++}$ such that total output (including non-depreciated capital) is given by:

$$Y_t = e^{\theta_t} F(K_t, L_t) + (1 - \delta) K_t = N \left[e^{\theta_t} h_t f(k_t/h_t) + (1 - \delta) k_t \right]$$
(119)

- Continue to assume linear homogeneity of F and impose Assumption 1.3 on f.
- Using (114) and (115) and linear homogeneity, per capita output $y_t := Y_t/N$ given by

$$y_t = e^{\theta_t} F(k_t, h_t) + (1 - \delta)k_t = e^{\theta_t} h_t f(k_t/h_t) + (1 - \delta)k_t$$
(120)

• Production shocks $(\theta_t)_{t\geq 0}$ follow an AR(1)-process of the form

$$\theta_t = \rho \theta_{t-1} + \varepsilon_t \tag{121}$$

where $0 \leq \rho < 1$ and $(\varepsilon_t)_{t\geq 0}$ consist of i.i.d. random variables with distribution μ_{ε}

• Thus, we can chose the underlying probability space $(\Omega, \mathscr{F}, \mathbb{P})$ and construct transition probability Q induced by (121) exactly as outlined in Section 3.2.2

- In each period t, the firm takes the current shock in period t as given and decides on demand for capital and labor.
- The fist order conditions then determine equilibrium factor prices as:

$$w_{t} = \mathcal{W}(k_{t}, h_{t}, \theta_{t}) := e^{\theta_{t}} \partial_{h} F(k_{t}, h_{t})$$

$$= e^{\theta_{t}} \left[f(k_{t}/h_{t}) - k_{t}/h_{t} f'(k_{t}/h_{t}) \right]$$

$$R_{t} = \mathcal{R}(k_{t}, h_{t}, \theta_{t}) := e^{\theta_{t}} \partial_{k} F(k_{t}, h_{t}) + (1 - \delta)$$

$$= e^{\theta_{t}} f'(k_{t}/h_{t}) + 1 - \delta$$
(122a)
(122b)

- Remark:
 - \circ in the deterministic case, non-depreciated capital was included in F resp. f which had the interpretation of a gross production function
 - $\circ\,$ here, we interpret F resp. f as a net production function and must, therefore, explicitly keep track of non-depreciated capital
 - the reason is that only net production output is affected by the shock.

6.4 Equilibrium

• Economy is summarized by the list $\mathscr{E}_{RBC} = \langle u, \beta, N, f, Q \rangle$ plus initial conditions $k_0 > 0$ and $\theta_0 \in \Theta$

Definition 6.1 Given $k_0 > 0$ and $\theta_0 \in \Theta$, an equilibrium of \mathscr{E}_{RBC} is an allocation $(c_t^e, h_t^e, k_{t+1}^e)_{t\geq 0}$ and a price sequence $(w_t^e, R_t^e)_{t\geq 0}$ which satisfy (117) and (122) for all $t \geq 0$ and (118).

- Can again use an equivalent planning problem to determine the (unique) equilibrium allocation
- Equilibrium prices then follow directly from (122) for all $t \ge 0$.

6.5 A stochastic planning problem

• Consider a benevolent social planner who maximizes consumer utility by choosing a feasible allocation.

Definition 6.2 Given $k_0 > 0$ and $\theta_0 \in \Theta$, a feasible allocation is an adapted stochastic process $(c_t, h_t, k_{t+1})_{t\geq 0}$ which satisfies $c_t \geq 0$, $0 \leq h_t \leq 1$, $k_{t+1} \geq 0$ for all $t \geq 0$ as well as the resource constraint

$$k_{t+1} + c_t \le e^{\theta_t} F(k_t, h_t) + (1 - \delta) k_t.$$
(123)

The set of feasible allocations is denoted $\mathbb{A}(k_0, \theta_0)$.

• The planning problem reads:

$$\max_{(c_t, h_t, k_{t+1})_{t \in \mathbb{T}}} \left\{ U((c_t, h_t)_{t \in \mathbb{T}}) \, \middle| \, (c_t, h_t, k_{t+1})_{t \in \mathbb{T}} \in \mathbb{A}(k_0, \theta_0) \right\}$$
(124)

- As in the deterministic case, can compute the equations that characterize the solution to (124)
- Can show that these coincide with the equilibrium equations derived above.
- Thus, the solution to (68) also constitutes an equilibrium allocation!

6.6 Solving the stochastic planning problem by recursive methods6.6.1 The Bellman equation

- Motivation for the following approach is analogous to the deterministic case
- Basic idea: Exploit the recursive structure of SPP
- Assume that f satisfies Assumption 1.3 and u Assumption 6.1 and $0 < \beta < 1$
- For brevity, set

$$M(k,h,\theta) := e^{\theta} F(k,h) + (1-\delta)k$$
(125)

• In the present stochastic setup, the Bellmann equation reads:

$$V(k,\theta) = \max_{k_+ \ge 0, 0 \le h \le 1} \left\{ u(M(k,h,\theta) - k_+,h) + \beta \int_{\Theta} V(k_+,\theta_+) Q(\theta,d\theta_+) \, | \, k_+ \le M(k,h,\theta) \right\}$$
(126)

6.6.2 Policy function

• Having computed the value function V, suppose the maximizing solution (k_+^*, h^*) in (126) is well-defined and unique for each $(k, \theta) \in \mathbb{R}_{++} \times \Theta$

• Define the policy function $g = (g_k, g_h) : \mathbb{R}_{++} \times \Theta \longrightarrow \mathbb{R}_+ \times [0, 1]$

$$g(k,\theta) = \arg \max_{k_+ \ge 0, 0 \le h \le 1} \left\{ u(M(k,h,\theta) - k_+, h) + \beta \int_{\Theta} V(k_+,\theta_+) Q(\theta, d\theta_+) \, | \, k_+ \le M(k,h,\theta) \right\}$$

Lemma 6.1 Let V be the unique solution to (126) and $g = (g_k, g_h)$ be defined as above. Then, for each (k_0, z_0) the sequence $\{c_t^*, h_t^*, k_{t+1}^*\}_{t\geq 0}$ defined recursively as $k_0^* = k_0$,

$$\begin{aligned} k_{t+1}^{\star} &= g_k(k_t^{\star}, \theta_t) \\ h_t^{\star} &= g_h(k_t^{\star}, \theta_t) \\ c_t^{\star} &= M(k_t^{\star}, h_t^{\star}, \theta_t) - k_{t+1}^{\star} \end{aligned}$$

for all $t \ge 0$ is a solution to (124).

6.7 Equilibrium dynamics in the RBC model

- Consequences of previous results:
 - \circ dynamics completely described by the endogenous state variable $\{k_t^\star\}_{t\geq 0}$ and the exogenous process $\{\theta_t\}_{t\geq 0}$
 - $\circ\,$ analogously to stochastic OLG model, can analyze dynamics, existence of invariant distributions, etc.
 - in general, mapping $g_k(\cdot; \theta)$ has a unique steady state \bar{k}_{θ} for all $\theta \in \Theta$

References

- ALVAREZ, F. & N. L. STOKEY (1998): "Dynamic Programming with Homogeneous Functions", Journal of Economic Theory, 82, 167–189.
- ARNOLD, L. (1998): Random Dynamical Systems. Springer-Verlag, Berlin a.o.
- BROCK, W. A. & L. J. MIRMAN (1972): "Optimal Growth and Uncertainty: The Discounted Case", *Journal of Economic Theory*, 4, 479–513.
- DECHERT, W. (1982): "Lagrange multipliers in infinite horizon discrete time optimal control models", *Journal of Mathematical Economics*, 9, 285–302.
- GALOR, O. (2007): Discrete Dynamical Systems. Springer, Berlin, a.o.
- GALOR, O. & H. E. RYDER (1989): "Existence, Uniqueness, and Stability of Equilibrium in an Overlapping–Generations Model with Productive Capital", *Journal of Economic Theory*, 49, 360–375.
- HILLEBRAND, M. (2008): Pension Systems, Demographic Change, and the Stock Market, Bd. 610 of Lecture Notes in Economics and Mathematical Systems. Springer, Berlin, Heidelberg, New York.

- KAMIHIGASHI, T. & J. STACHURSKI (2014): "Stochastic Stability in Monotone Economies", Theoretical Economics, 9, 383 – 407.
- LE VAN, C. & H. C. SAGLAMB (2004): "Optimal growth models and the Lagrange multiplier", *Journal of Mathematical Economics*, 40, 393410.
- MAS-COLELL, A., M. D. WHINSTON & J. R. GREEN (1995): *Microeconomic Theory*. Oxford University Press, Oxford a.o.
- MCGOVERN, J., O. F. MORAND & K. L. REFFETT (2013): "Computing minimal state space recursive equilibrium in OLG models with stochastic production", *Economic Theory*, 54, 623–674.
- MORAND, O. F. & K. L. REFFETT (2007): "Stationary Markovian Equilibrium in Overlapping Generations Models with Stochastic Nonclassical Production and Markov Shocks", *Journal of Mathematical Economics*, 43, 501–522.
- SCHENK-HOPPÉ, K. R. & B. SCHMALFUSS (2001): "Random fixed points in a stochastic Solow growth model.", *Journal of Mathematical Economics*, 36, 19–30.
- STACHURSKI, J. (2009): *Economic Dynamics: Theory and Computation*. MIT Press, Cambridge (Mass.) a.o.

- STOKEY, N. L. & R. E. J. LUCAS (1989): *Recursive Methods in Economic Dynamics*. Harvard University Press, Cambridge (Mass.) a.o.
- WANG, Y. (1993): "Stationary Equilibria in an Overlapping Generations Economy with Stochastic Production", *Journal of Economic Theory*, 61(2), 423–435.