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3 Setting up a random environment

In a stochastic world, all quantities take the form of random variables

We will first review some basic concepts from probability theory required for our purposes

Following structure is very condensed. You are strongly encouraged to consult Stachurski
(2009) for a more in-depth treatment.

In the sequel we work with infinite discrete time periods T = {0,1,2,...}.

If Ais any set, 24 or Pow(A) denotes the power set, i.e., the class of all subsets of A.
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3.1 Basic concepts from probability theory
3.1.1 Probability spaces and random variables

e Randomness in our model enters via an exogenous stochastic process (6;);>0, i.e., a se-
quence of random variables with values in © C RY, N > 1.

All these random variables live on an underlying probability space (€2, F,P), where:

o () is the sample space which represents all possible states of the world

o F C Pow() is a collection of subsets of  that form a o-algebra, i.e., (i) Q € Z, (ii)
A e F implies A°:= Q\A € .Z and (iii) (An)n>0, An € F Vn implies U (A, € F.

o P:.# — [0, 1] is a probability measure, i.e., a countably additive function satisfying
P(Q2) = 1 that assigns probabilities P(A) to each measurable subset A € .% of ()

© is endowed with some o-algebra o7 C Pow(©) to become a measurable space (0, <)

Since © C R¥ is a topological space, we can (and typically do) choose for &7 the Borel-o
algebra Z(0) which is the smallest o-algebra containing the topology

For each ¢t € T, the mapping 6, : Q@ — O is ¥ — ZA(O) measurable, i.e., for all B € #(0),
0,1 (B) = {w € Q|,(w) € B} C Qis an element of .Z7.
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3.1.2 Probability and distributions of random variables

e For each t € T, can construct probability distribution/measure g, of random variable 6,:

o given a set B € A(0), u(B) is the probability that 6, € B

o straightforward to construct u; by defining the image measure
m(B) =P (6;'(B)) =P ({w € Q6 (w) € B}) (81)

o mapping p; : B(0) — [0,1] is indeed a probability measure on (0, %4(0)) and
called the probability distribution of 6,

o if ® = R, there is a one-to one correspondence between distribution p; and the
distribution function Fi(b) := (] — 00, b]), b € R. Similar result holds if N > 1.

e Analogously, construct joint distribution g of random variables 0y := (6;)er for any I C T

e Further, can infer the distributions of random variables defined by measurable functions

o f:O —XCRMoff,
o f:0 — X C RM of

with values in the measurable space (X, Z(X))
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3.2 Constructing the underlying probability space

e Previous result: Given (2,.%,P) and measurable mappings (6;);, can compute probability
distributions of all random variables (6;):cr, I C T and of all measurable functions of these
random variables

e Can also reverse the previous construction:

o specify distributions/dependence structure of the random variables (6;);er

o construct an underlying probability space (£2,.%,P) consistent with this.

3.2.1 Example 1: Independent random variables

e Suppose we want (6;);>o to consist of independent random variables wit values in © each
having a desired probability distribution p : Z(0) — [0, 1], say, a normal distribution.

e In this case, define:

o =0T (the set of sequences with values in ©)

o . = A(Q) (the product o-algebra generated by measurable rectangles or, equiva-
lently, the Borel o-algebra when (2 is endowed with the product topology)

o P = u" (the product measure which satisfies " (2 x ... x Qx Ax BxQx...) =
p(A) - u(B) for any A, B € B(0) )
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3.2.2 Example 2: Correlated random variables

e Suppose we want (6;);er to follow an auto-regressive structure of the form
Ht = Met_l + &4, t> 1, (82)

where M € RY*Y and (g;);>1 consists of i.i.d. random variables with values in & C R¥
and distribution p. which are independent of 6, which has distribution .

e In this case, can also construct (2, %, P) by defining Q = Ox &N, F = B(Q), P = po@pul.
e Noting that 6, = A0, + Zf:o M™e,_, we can compute p; for each ¢t > 0 via (81

e For later reference, note that (I2I)) defines a transition probability, i.e., a mapping @ :
© x A(0) — [0,1] such that Q(0, A) is the probability that 6;,, € A given that 0, =6

e Forall § € © and A € #(0), @ can explicitly be constructed as
QO,A) =pfc e E|IMO+c € A} (83)

e The distributions (4 );er can then be computed recursively for ¢ > 1 as

(B = / Q6. B)juy_1(d6). (34)
for each B € #(0).
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3.3

Filtration and conditional expectation

Let (6:)+>0 be the exogenous stochastic process on (€2,.#,P) defined previously.

In our equilibrium framework derived below, all endogenous variables will take the form of
random variables (X;);>o with values in X C R which depend on the exogenous process.

We generally take the notation (X3);>o to mean that X, is observable in period ¢, i.e., can
only depend on exogenous random variables 6,,, n < t.

To impose this restriction formally, define a filtration (%;);>0 where %, C .7 is the
smallest o-algebra such that each 6,,, 0 < n <t is %#;-%(0O) measurable.

Process (Xi)ier is said to be adapted (to (%;)i>0) if each Xy is F — ZA(X) measurable.
This captures exactly the idea that X; can depend only on random variables #,,, n <t

Specifically, if (X;)er is adapted and E,[-] := E[-|.%;] is the expectations operator condi-
tional on observations up to time ¢, E,[X,] = X, for all ¢t and n < t.

If X} has distribution px, : #(X) — [0, 1] and is integrable, its unconditional expectation
is defined as

E[X,] / X, (w /X i, (d). (85)
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4 Stochastic decision problems with finite horizon

4.1 A stochastic OLG model
e Consider a stochastic version of the OLG model from Section [[L6] similar to Wang (1993):

o all assumptions on population structure, labor supply, etc. remain the same

o but: production side modified to incorporate random production shocks

e We continue to denote equilibrium variables as (X;):>( but these are now adapted stochas-
tic processes rather than just sequences.

e All equalities and inequalities involving random variables are assumed to hold P-almost
surely without explicit notice.
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4.1.1 Production side

e Suppose that production in period ¢ is subject to multiplicative shock 6, € © C R, :

}/;g - HtF(Kt, Lt) = HtLtf(kt) (86)
e Production shocks (6;):>o consists of independent random variables with distribution g
and values in © = [Ain, Omax] C Ry,

e Thus, we can chose the underlying probability space (£2,.%,P) exactly as outlined in
Section B.2.1]

e In each period t, the firm takes the current shock in period ¢ as given and decides on
demand for capital and labor.

e Continue to impose Assumption on f and define k; = IL(—: for all t € T as before.

e The fist order conditions then determine equilibrium factor prices as:

w = W(ks, 00) = 0, f (ki) — kuf' (k)] (87a)
R = Rk, 0;) :=60:f" (k) (87h)
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4.1.2 A stochastic two-period decision problem

e Consider decision problem of a young consumer in period t > 0:

o consumer observes her current labor income w; > 0 (which is a real number)
o capital return R, treated as random variable with values in [Ryin, Rmax] C Ry

o knowing the underlying probabilistic structure, consumer computes correct condi-
tional expectation [E,[-] of next period’s random variables

e Any investment decision s; € [0, w;] (which is a number!) determines lifetime consumption

cf Wy — S (88a)

(o)
i1 = Ripase (88b)
where ¢/ > 0 is a number and ¢, ; a random variable with values in [s; Ruin, St Rimax]-

e Preferences over alternative random variables (cf, ¢f,,)possess an expected utility repre-
sentation with von-Nemann Morgenstern utility U(c?, ¢®) = u(c¥) + fu(c?)

e Decision problem reads:

msax{u(wt — 8) + BE, [u(sRes1)] | 0 < 5 < wt} (89)
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e Define consumer’s objective function U, :|0, w,[— R,

Ui(s) == u(w; — s) + BE; [u(sRes1)] (90)
e Imposing Assumption on utility u, we obtain the following result:

Lemma 4.1 Under Assumption[1.2, the following holds:

(¢) Uy in [@0) is C?, strictly concave, and limg o U}(s) = —limg q,, U/(s) = —o0

(73) Problem (89) has a unique interior solution s; determined by
W (wy — s) = BE [Re1 v (sRypr)] (91)

e Hint: When proving this result, exploit that in the present case, differentiation can be
interchanged with the expectations operator
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4.1.3 Deriving the equilibrium equations
o Aggregate investment made at time ¢ determines next periods’s capital stock K;,1 = Ns;
e Defining ki1 = K11 /N, ([@) can be written as:
' (wy — k1) = BE; [Rep1t (kg1 Res)] (92)
e Observations:

o by (B7h), next period’s capital return determined by R;i1 = 0, 1f (kiy1)

o uncertainty in R;.; completely due uncertainty about shock which has distribution
i independent of any other realizations at time ¢

o this permits (@2)) to be written as:
Ul(wt - kt—l—l) = kt-l—lv ) /(ktHR(ktHa ))] (93)
= ﬁ/ R(kiyr, 0)u' (k1 R(kiy1, 0))pu(d0).

e Consumption of both generations in ¢ satisfies:

= w;— ki (94a)
C? = Rtkt. (94b)
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4.1.4 Equilibrium

e Stochastic OLG economy is summarized by the list sora = (u, B, f, 1)

e Following definition of equilibrium is straightforward generalization of deterministic case.

Definition 4.1 Given kg > 0, an equilibrium of &sora consists of adapted stochastic processes

of prices (w§, R )i>o and an allocation (ki i, ¢, ¢ )is0 satisfying (§7), (@3), and (94) for all
t>0.

e Questions as in the deterministic case:

o existence of equilibrium?
o uniqueness of equilibrium?

o dynamic behavior of equilibrium?

e To answer them, will again derive recursive structure of equilibrium.
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4.1.5 Recursive structure of equilibrium

e Following ideas exactly analogous to deterministic case studied in Section [[.6.5]

e Given k > 0 and 0 € ©, define for each 0 < ky < W(k,0) the function

H(kyi k. 0) = o' (W(k,0) — k) = BE, [R(ky, ) v/ (B Rk, )] - (95)

e Equilibrium process (kf,;)i>0 solves H(kiy1; ki, 60;) = 0 for all ¢ > 0 and determines all
other equilibrium variables

e Following auxiliary result can be proved exactly as in the deterministic case:

Lemma 4.2 Under Assumptions[L.4 and[1.3, the following holds:

(i) The function H(-;k,0) defined in ([93) has at least one zero for all k >0 and 6 € ©.
(i) If, in addition either (a) or (b) of Assumption hold, this zero is unique.
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e Lemma allows us to state the following main result:

Proposition 4.1 Under Assumptions[L.2 and[L.3, the following holds for all kg > 0:
(i) Economy &song has at least one equilibrium.
(11) If, in addition, either (a) or (b) of Assumption [1]] hold, this equilibrium is unique.
e Observations:

o additional restrictions ensure existence of a map K : Ry, x © — R, which
determines the unique solution k, = K(k,0) to ([B4) for each £k > 0 and 0 € ©

o by the implicit function theorem, K is C*, strictly increasing, and satisfies
0< K(k,0) <W(k,0) < f(k,8). (96)
o unique equilibrium process (kf,)¢>o determined recursively by
i1 = K(KE, Or). (97)

e To study equilibrium dynamics, need some basic concepts from stochastic dynamical
systems theory
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5

5.1
[ ]

Stochastic dynamical systems in discrete time

Stochastic dynamical systems and stability
For more details, the reader is again referred to Stachurski (2009).

Assume that endogenous state dynamics take the form F': X x © — X
Tip1 = F(xy, 0;) (98)
where we now restrict attention to case where X = R

Also assume that exogenous process is i.i.d. with distribution ug and values in © =
[emina Hmax] C R-‘,——i—

In the deterministic case, the state x; in period t is a real number

In the stochastic case, the state x; in period t is a random variable which is completely
described by its distribution p,; : B(X) — [0, 1]

Thus, a steady state in the stochastic case is a distribution fi (or a random variable Z
which has this distribution) which remains invariant under (O8]).

Thus, to compute a stochastic steady state of (08]), we need to derive how the sequence
of distributions ()0 of the random variables (z;);>0 evolve over time
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5.2

Markov operator
Suppose z( has distribution p, what is the distribution u,; of z; for any ¢t > 17

As in Section B.2.2] note that (Of]) defines a transition probability, i.e., a mapping @ :
X' x B(X) — [0,1] such that Q(z, A) is the probability that z;1, € A given that z; = x

For all z € X and A € #(X), @ can explicitly be constructed as
Q(z, A) = po{b € O|F(z,0) € A} (99)

The distributions (u;)wer can then be computed recursively for ¢ > 1 as

1y(B) = / Qlx, B+ (dx). (100)
X
for each B € #A(X).
Let . (X) denote the class of probability measures on %(X)

Then, can define an operator T : .# (X) — .4 (X) which associates with any p € . (X)
the new probability measure Ty defined for each B € #(X) as

Tu(B) = / Q. B)u(dx). (101)
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5.3

Stochastic steady states

The concept of an invariant distribution is now straightforward:

Definition 5.1 An steady state of the stochastic dynamical system (98) is a probability
distribution i € A (X) which is a fived point of T, i.e., T = [u.

The stochastic analog of a steady state is therefore an invariant probability distribution

Large literature which studies existence of invariant distributions for Markov operators

Notion of stability requires lim;_,o Ty = ji where the limiting operation requires a
suitable notion of convergence of measures (most results on stability use the concept of
weak convergence, see Stokey & Lucas (1989)).

Very general conditions for existence/uniqueness/stablity of invariant distributions if F’
resp. 1" has certain monotonicity properties in Kamihigashi & Stachurski (2014)

There is also a theory of Random Dynamical Systems due to Arnold (1998) which defines
the concept of a random fixed point.

See Schenk-Hoppé & Schmalfuss (2001) for an economic application of this theory and
how it relates to the previous concepts
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5.4 Equilibrium dynamics in the stochastic OLG model
5.4.1 Stable sets
e Consider existence of stochastic steady states/invariant distributions of economy &sora
e Existence of stochastic steady states follows from the existence of stable sets:
Definition 5.2 A stable set of (97) is an interval [kmin, kmax] C Ry such that:
(i) K(kmin, Omin) = Kmin
(1) K(Fmas: Omax) = Kmax
(111) K(k,Omin) < k < K(k, Omax) for all k € [kmin, kmax)
e Existence of a stable set non-trivial steady state & > 0 not guaranteed, fails if
K(k, Omax) < k (102)
for all £ > 0 (impoverishment).
e Sufficient condition to exclude this and ensure existence is

lim K (k. Oin) > 1. (103)
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5.4.2 Existence of a stochastic steady state

Following existence result due to Wang (1993):

Proposition 5.1 (Wang (1993)) If the equilibrium map KC from (97) satisfies condition
(I03), there exists at least one stochastic steady state/invariant probability distribution.

Uniqueness of a stable sets not guaranteed, same multiplicity problem as in the deter-
ministic case.

Uniqueness obtains, however, if for all § € ©, IC(-, 0) has a unique fixed point.

This is a special case of the more general concept of a stable fixed point configuration
(cf. Brock & Mirman (1972)). Essentially, this requires that the largest fixed point of
K(-, Omin) be smaller than the smallest fixed point of (-, Oax) (cf. the illustrations pro-
vided in class).

Much more general existence results on stochastic steady states that also hold for a
much larger class of OLG economies can be found, e.g., in Morand & Reffett (2007) and
McGovern, Morand & Reffett (2013).
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6 Stochastic decision problems with infinite horizon

6.1 A prototype decision problem
e Consider the problem as in Section 2.2 with T :={0,1,2,...} but now with uncertainty

e In particular, we now:

o abstract from loans by requiring s; > 0.

o include the consumer’s labor-leisure choice h; € [0, h] which determines labor supply

e Remainder normalizes maximum labor to h = 1.

79



6.1.1 Decision setup

e Given variables:

o adapted stochastic process of wages w* = (wy)er
o adapted stochastic process of capital returns R™ = (Ry)ser

o initial capital 51 >0
e Decision variables:

o consumption plan: adapted stochastic process (¢;)ier > 0, ¢, > 0 Vi
o investment plan: adapted stochastic process (s;)ier, S¢ > 0 Vit

o labor supply plan: adapted stochastic process (h;)ier, 0 < hy < h Vi
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6.1.2 Intertemporal budget set

e Feasible plans must satisfy period budget equation
Ct + Sy S wtht + Rtst—l (104)
for all t € T where s_; =5_4

e Feasible plans are defined by budget set:

B(w™, R™,5_1) = {(ct, hiy $¢)er| e > 0,0 < hy < 1,5, > 0, ([I04)) holds for all ¢ € ’]1"}
(105)
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6.1.3 Preferences and decision problem

e Utility in period ¢ now depends on consumption ¢; > 0 and leisure 0 < h; < 1 and given
by utility function

u:Ry x[0,] — R, (¢, h) — u(e, h) (106)

e Preferences over consumption-labor processes (¢4, by )ier represented by utility function

U((Ct, h’t)tET) = EO ZBtU(Ct, ht)] y 0< 5 < 1. (107)
t=0
e Decision problem:
maX{U((ct, he)ier) ‘ (cos e, 80 )ier € B(e®, R, g_l)}. (108)

Assumption 6.1 The utility function u in (I00) is continuous, strictly concave and C* on the
interior of its domain with partial derivatives satisfying

Ot < 0 < Ju and li{% O.u(e, h) = o0 (109a)
Onnu < 0 < —0pu and flzl/‘rnl Opu(c, h) = —oo. (109b)
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6.2

Solving the decision problem
Following derivations impose Assumption

Then, any solution to (I08) will be interior, i.e., ¢; > 0 and 0 < hf < 1 due to (I09)

Can again use a variational argument to obtain following equations which characterize
solution

For each ¢ > 0 and conditional on .%;, solution to (I08) must satisfy the intratemporal
optimality condition

ahU(Ct, ht)

e ) 110

8cu(ct, ht) e ( )
and the intertemporal optimality condition (Euler equation)

BOeu(cri, hitr)

E: |R = 1. 111
Further, for all t > 0, the budget equality
Cp + S = wtht + Rtst—l (112)
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holds and the stochastic transversality condition (STVC)

T
-1
ST H Rt
t=0

lim EO
T—o00

—0. (113)

e Remarks:

o that any process (cj, si, hi)ier € B(e™, R, 5_1) satisfying (I10), (ITT)), (I12)) for all
t € T as well as ([II3)) is indeed a solution to (I08)) can be proved along the lines of the
proof of Proposition 2.3 done in class (exploiting the law of iterated expectations!).

o one can also show by using the same arguments as in the proof of Proposition 2.3
that the solution to (I08) is P-a.s. unique.

o we could also - somewhat mechanically - have used a Lagrangian approach to obtain
the previous conditions, but it is not quite clear how derivatives conditional on .%;
should be interpreted.

84



6.3 An equilibrium framework: The RBC model

e Consider a stochastic version of the neoclassical growth model from Section 2.4 with
endogenous labor supply:
o production side modified to incorporate random production shocks

o consumer side modified to include labor-leisure choice, decision problem solved under
uncertainty as in Section 6.1

o unless stated otherwise, all other assumptions remain the same as in Section 2.4

e We continue to denote equilibrium variables as (X;):>( but these are now adapted stochas-
tic processes rather than just sequences.

e All equalities and inequalities involving random variables are assumed to hold P-almost
surely without explicit notice.
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6.3.1 Consumer side

e As in deterministic case, N identical consumers who each

o plan over infinitely many future periods T = {0,1,2,...}
o consume ¢; and invest s; in period ¢
o supply h; units of labor in period ¢, now determined endogenously

o capital earns return R;, labor the wage w; in ¢
e Decision problem exactly as in Section 6.1
e As consumers are identical, so are the decisions they take!
e At the aggregate level, factor supply in period t > 0 given by

Kt = NSt_l (115)

and capital per capita k, := K;/N evolves as

]ft = St—1, t Z 1. (116)
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e Optimal decision satisfies the conditions:

¢+ kt+1 = wtht + Rtk't (117&)
ahU(Ct, ht)
_Jh A TR 117b
8CU(Ct, ht) W ( )
BOu(ceyr, hiy1)
E 1 117
i |:Rt+1 0Cu(ct, ht) ( C)

and the stochastic transversality condition (STVC)

T
kra [ B

t=0

= 0. (118)

lim EO
T—o00
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6.3.2 Production side

e Suppose that (net) production in period ¢ is subject to multiplicative shock 6, € © C R,
such that total output (including non-depreciated capital) is given by:

Y, = " F(Ky, L) + (1 — 6) Ky = N [” by f (K /he) + (1 — 0) k] (119)
e Continue to assume linear homogeneity of F' and impose Assumption on f.

e Using (I14) and (II3]) and linear homogeneity, per capita output y; := Y;/N given by
Yo = " F(ky, hy) + (1 — 8k, = €% hyf (ke /hy) + (1 — 0)ky (120)
e Production shocks (6;);>0 follow an AR(1)-process of the form
0y = pbi_1 + &4 (121)

where 0 < p < 1 and (&;)¢>0 consist of i.i.d. random variables with distribution .

e Thus, we can chose the underlying probability space (£2,.%,P) and construct transition
probability @ induced by ([[2]]) exactly as outlined in Section 322
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e In each period t, the firm takes the current shock in period ¢ as given and decides on
demand for capital and labor.

e The fist order conditions then determine equilibrium factor prices as:

Wy = W(kt, ht, et) = 69t0hF(kt, ht) (122&)
= " [f(ke/he) = ke/hof (ke /he)]
Ry = R(ky, he,0;) = "0 F(ky, hy) + (1 =96) (122b)

= " f(k/hy) +1 -6

e Remark:
o in the deterministic case, non-depreciated capital was included in F' resp. f which
had the interpretation of a gross production function

o here, we interpret F' resp. f as a net production function and must, therefore, ex-
plicitly keep track of non-depreciated capital

o the reason is that only net production output is affected by the shock.
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6.4 Equilibrium

e Economy is summarized by the list &gpc = (u, 8, N, f, Q) plus initial conditions kg > 0
and 6, € ©

Definition 6.1 Given ko > 0 and 6y € O, an equilibrium of Erpe is an allocation (cf, hf, ki, 1 )i>o0
and a price sequence (wg, RS )0 which satisfy (I17) and (I22) for all t > 0 and (II13).

e Can again use an equivalent planning problem to determine the (unique) equilibrium
allocation

e Equilibrium prices then follow directly from (I22) for all ¢ > 0.
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6.5 A stochastic planning problem

e Consider a benevolent social planner who maximizes consumer utility by choosing a fea-
sible allocation.

Definition 6.2 Given kg > 0 and 0y € O, a feasible allocation is an adapted stochastic
process (ci, hy, kii1)i>0 which satisfies ¢, >0, 0 < hy <1, kypy >0 for allt > 0 as well as
the resource constraint

kt+1 + ¢ S 69tF(k‘t, ht) + (1 — 5)kt (123)
The set of feasible allocations is denoted A(kg,0o).

The planning problem reads:

max {U((Ct, he)ier) | (ce, ey kg )rer € Ak, 90)} (124)

(ct,ht,ker1)eer

As in the deterministic case, can compute the equations that characterize the solution to

(24

e Can show that these coincide with the equilibrium equations derived above.

Thus, the solution to (G8) also constitutes an equilibrium allocation!
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6.6 Solving the stochastic planning problem by recursive methods
6.6.1 The Bellman equation

e Motivation for the following approach is analogous to the deterministic case

Basic idea: Exploit the recursive structure of SPP

Assume that f satisfies Assumption and u Assumption and 0 < <1

For brevity, set

M(k,h,0) := " F(k,h) + (1 — 0)k (125)

In the present stochastic setup, the Bellmann equation reads:

VOO =, s LM ,0) — k) + /@ V(e 02)Q(0.d0) | K < M(k,1.0)]
(126)
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6.6.2 Policy function

e Having computed the value function V', suppose the maximizing solution (k% , h*) in (I20)
is well-defined and unique for each (k,0) € Ry, x ©

e Define the policy function g = (gx, g5) : Ry x © — R, x [0, 1]

g(k,0) = arg max {u(M(k:,h,&)—k;+,h)+B/®V(k+,9+)Q(9,d6+)|k+gM(k;,h,H)}

k4 >0,0<h<1

Lemma 6.1 Let V be the unique solution to {I26) and g = (gx, gn) be defined as above. Then,
for each (ko, 29) the sequence {c}, h},kf 1 }i=0 defined recursively as ki = ko,

k:+1 = gk(k‘;‘,Qt)
h: = gh(k; ‘915)
g = MC(k{ by, 0) — ki

for allt > 0 is a solution to (124).

93



6.7 Equilibrium dynamics in the RBC model

e Consequences of previous results:
o dynamics completely described by the endogenous state variable {k}}:>o and the
exogenous process {6 }+>o

o analogously to stochastic OLG model, can analyze dynamics, existence of invariant
distributions, etc.

o in general, mapping gx(-; @) has a unique steady state kg for all € ©
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