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Organizational issues

• Part 1:

◦ seven classes:

- 10:15 - 11:45 h

- 12:30 - 14:00 h

◦ midterm exam on Nov. 30

• Problem sets:

◦ issued every week on Mondays

◦ due next Monday, to be handed-in prior to class!

• Main reference:

◦ slides (shortly available via OLAT)

◦ book ’Applied Intertemporal Optimization’ by Klaus Wälde
(freely available at http:///www.waelde.com)

◦ additional references on the slides

• Answer all (explicit or implicit) questions on slides, prove all results!
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Objective

Part 1 of his course is on Applied Intertemporal Optimization. Its general aim is to provide
participants with the tools and mathematical methods necessary to analyze and solve opti-
mization problems and dynamic models in discrete and continuous time and in deterministic
and stochastic environments. Problems and models of this type constitute a major building
block of modern macroeconomic theory and many other areas such as finance, etc. The theory
presented in class is complemented by problem sets which serve to illustrate and amplify the
theoretical results and their applications.
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1 Decision problems with finite time horizon

1.1 A prototype consumption investment problem

1.1.1 Setup

• Consider single consumer/household:

◦ takes decisions in initial period t = 0

◦ life/planning horizon ends in terminal period t = T > 0

◦ planing horizon is T := {0, 1, . . . , T}

• Single consumption good (’numeraire’), all quantities denominated in consumption units

• In each period t ∈ T:

◦ consumer earns exogenous non-capital income et ≥ 0

◦ consumes ct ≥ 0, invests/borrows capital st

◦ one unit invested in t− 1 earns gross return Rt > 0 in t

• Thus, to make problem more interesting, allow for unbounded loans

• But: require sT ≥ 0, i.e., no loans in terminal period
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1.1.2 Intertemporal budget set

• Given quantities in decision:

◦ non-capital incomes eT := (e0, . . . , eT )

◦ returns RT := (R0, . . . , RT )

◦ initial capital s̄−1

• Decision variables:

◦ consumption plan (ct)t∈T

◦ investment plan (st)t∈T

• Sequential budget constraint for all t ∈ T:

ct + st ≤ et +Rtst−1 (1)

where s−1 ≡ s̄−1

• Incomes, returns, and initial capital determine budget set:

B(eT , RT , s̄−1) :=
{

(ct, st)t∈T|ct ≥ 0, (1) holds for all t ∈ T, sT ≥ 0
}

(2)

12



• Investment sequence (st)t∈T determines future wealth levels

Wt := et +Rtst−1, t > 0. (3)

• Define discounted future lifetime income

Et :=
et+1

Rt+1
+ . . .+

eT
Rt+1 · · ·RT

=
T∑

n=t+1

en

n∏

m=t+1

R−1
m (4)

for t ∈ T\{T} and ET := 0.

Lemma 1.1 The budget set defined in (2) satisfies the following:

(i) Any (ct, st)t∈T ∈ B(eT , RT , s̄−1) satisfies

st ≥ st := −Et (5)

for all t ∈ T while the wealth levels defined in (3) satisfy Wt ≥ −Et.

(ii) B(eT , RT , s̄−1) is non-degenerate (contains more than one element) iff

s̄−1 > −
e0 + E0

R0
. (6)

(iii) B(eT , RT , s̄−1) is compact and convex ∀(eT , RT , s̄−1) ∈ R
T+1
+ × R

T+1
++ × R satisfying (6).

• Remainder assumes that solvency condition (6) holds.
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1.1.3 Preferences and decision problem

• Consumer has time-additive utility function U : RT+1
+ −→ R,

U((ct)t∈T) =
T∑

t=0

βtu(ct), β > 0. (7)

• Decision problem reads:

max
{

U((ct)t∈T)|(ct, st)t∈T ∈ B(eT , RT , s̄−1)
}

. (8)

• Show: Following restriction on u sufficient for (8) to have a unique solution:

Assumption 1.1 The period utility function u : R+ −→ R is continuous, strictly in-
creasing, and strictly concave.

• Following stronger restriction will be convenient more:

Assumption 1.2 The period utility function u : R+ −→ R is continuous and C2 on R++

with derivatives satisfying u′′ < 0 < u′ and the Inada condition limcց0 u
′(c) = ∞.
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1.2 Solving the problem by Lagrangian methods

• Adopt a standard Lagrangian approach to solve (8)

• Let u satisfy stronger Assumption 1.2 and let solvency condition (6) hold

• Define the Lagrangian function

L ((ct, st, µt, λt)t∈T) :=
∑

t∈T

[
βtu(ct) + µtct + λt(et +Rtst−1 − st − ct)

]

• Standard arguments imply that (c∗t , s
∗
t )t∈T solves (8) if there exist non-negative Lagrangian

multipliers (µ∗
t , λ

∗
t )t∈T such that (c∗t , s

∗
t , µ

∗
t , λ

∗
t )t∈T solves the first order conditions (FOCs):

∂L

∂ct
((ct, st, µt, λt)t∈T) = βtu′(ct) + µt − λt = 0 ∀t ∈ T (9)

∂L

∂st
((ct, st, µt, λt)t∈T) = −λt +Rt+1λt+1 = 0 ∀t ∈ T\{T} (10)

the complementary slackness conditions (CSCs):

µtct = λt(et +Rtst−1 − st − ct) = 0 (11)

and (1) and ct ≥ 0 for all t ∈ T where s−1 = s̄−1 and sT = 0.
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• Observations:

◦ boundary behavior of u′ from Assumption 1.2 excludes c∗t = 0

◦ thus, µ∗
t = 0 for all t ∈ T by (11)

◦ then, by (9) and (10), λ∗t > 0

◦ hence, (1) is binding for all t ∈ T by (11).

• These results give:

Proposition 1.1 Let Assumption 1.2 and the solvency condition (6) be satisfied. Then,
any list (c∗t , s

∗
t )t∈T which solves the conditions

βu′(ct+1)Rt+1 = u′(ct) ∀t ∈ T\{T} (12a)

ct + st = et +Rtst−1 ∀t ∈ T (12b)

sT = 0 (12c)

is a solution to (8).

• Interpretation of (12a) (’MRS’ = ’marginal rate of substitution’):

βu′(ct+1)

u′(ct)
︸ ︷︷ ︸

intertemporal MRS

=
1

Rt+1
︸ ︷︷ ︸

intertemporal price ratio
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1.3 Solving the problem by recursive methods

1.3.1 The three-period case

• Impose [weaker] Assumption 1.1 on u, suppose first T = 2

• Consider future decision problem in t = T −1 = 1 given arbitraryW1 = e1+R1s0 ≥ −E1:

max
c1,s1

{

u(c1) + βu(e2 + s1R2)|c1 ≥ 0, c1 + s1 ≤W1, s1 ≥ −E1

}

• For each W ≥ −E1, define the value function [why well-defined?]

V1(W ) := max
c1,s1

{

u(c1) + βu(e2 + s1R2)|c1 ≥ 0, c1 + s1 ≤W, s1 ≥ −E1

}

.

• Principle of Optimality states that

max
(ct,st)t∈T

{

U((ct)t∈T)|(ct, st)t∈T ∈ B(eT , RT , s̄−1)
}

= max
c0,s0

{

u(c0) + βV1(e1 + s0R1) | c0 ≥ 0, s0 ≥ −E0, c0 + s0 ≤ e0 +R0s̄−1

}

. (13)

• Knowing V1, obtain optimal decision (c∗0, s
∗
0) for t = 0 by solving one-stage problem (13)!
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1.3.2 The general multi-period case

• Straightforward to generalize previous approach.

• Define value functions (Vt)t∈T recursively by setting VT = u and, for all W ≥ −Et:

Vt(W ) = max
c,s

{

u(c) + βVt+1(et+1 + sRt+1) | c ≥ 0, s ≥ −Et, s+ c ≤W
}

(14)

• Prove: Under Assumption 1.1, each function Vt, t ∈ T is well-defined and continuous,
strictly increasing, and strictly concave.

• Obtain the optimal decision in t = 0 as:

(c∗0, s
∗
0) = argmax

c,s

{

u(c) + βV1(e1 + sR1) | c ≥ 0, s ≥ −E0, c+ s ≤ e0 +R0s̄−1

}

. (15)

• Can recover optimal decision for all t ∈ T recursively by setting W ∗
t = et + s∗t−1Rt and

(c∗t , s
∗
t ) = argmax

c,s

{

u(c) + βVt+1(et+1 + sRt+1) | c ≥ 0, s ≥ −Et, c+ s ≤W ∗
t

}

. (16)

• Remark: A rigorous proof of the principle of optimality in a related context can be found
in Hillebrand (2008).
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1.4 Characterizing the recursive solution by first order conditions

1.4.1 Differentiability of the value functions

• Restrict u by stronger Assumption 1.2

• In this case, any candidate solution to (8) satisfies Wt > −Et for all t ∈ T

• Using simple induction and the implicit function theorem (cf. Mas-Colell, Whinston &
Green (1995), Appendix M.E), one (you! :-)) can show that

◦ each value function Vt, t ∈ T is C1

◦ the solution (c∗t , s
∗
t ) to (14) is determined by C1 functions

Ct : ]− Et,∞[ −→ R++, c∗t = Ct(Wt)

St : ]− Et,∞[ −→ ]− Et,∞[, s∗t = St(Wt).

• Using this in (14) and the budget constraint gives for all t < T and W > −Et:

Vt(W ) = u(W − St(W )) + βVt+1(et+1 +Rt+1St(W )) (17)

• Also note that the optimal solution St(W ) satisfies the FOC’s [why?]

− u′(W − St(W )) + βRt+1V
′
t+1(et+1 +Rt+1St(W )). (18)

19



1.4.2 The envelope theorem

• Differentiating (17) using (18) gives for all t < T and W > −Et:

V ′
t (W ) = u′(W − St(W )) = u′(Ct(W )). (19)

• This is nothing but a simple application of the envelope theorem (see Mas-Colell, Whin-
ston & Green (1995), Appendix M.L)

• We now clam that for all t and W > −Et:

− u′(W − St(W )) + βRt+1u
′(et+1 +Rt+1St(W )). (20)

• To see this, suppose first t = T − 1. Then, V ′
t+1 = u′ can be used in (18) to obtain (20).

• Second, suppose t < T − 1. Then, (19) gives V ′
t+1(W ) = u′(Ct+1(W )) for all W > −Et+1.

Using this in (18) also gives (20).

• Defining the optimal wealth levels (W ∗
t )t∈T recursively by (3) and setting c∗t := Ct(W

∗
t ),

equation (20) can be written as

− u′(c∗t ) + βRt+1u
′(c∗t+1). (21)

which is precisely the optimality condition (12a).
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1.5 Handling problems with unbounded utility

• Some popular utility functions including log-utility satisfy limcց0 u(c) = −∞

• Problem:

◦ u not defined for c = 0

◦ U not continuous on budget set  above’s existence argument fails!

• Thus, these functions are excluded by Assumption 1.1

• But: Can handle problem as follows:

◦ choose a (very small) lower bound c > 0

◦ add restriction ct ≥ c to budget set (2)

◦ choosing c > 0 small enough ensures that c∗t > c for all t ∈ T

• Remark: Previous modification changes lower bounds on savings to

st ≥ −Êt := −

[
et+1 − c

Rt+1
+ . . .+

eT − c

Rt+1 · · ·RT

]

= −

T∑

n=t+1

(en − c)

n∏

m=t+1

R−1
m (22)

• If (6) holds for c = 0, will continue to hold for c > 0 small!
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1.6 An equilibrium framework: The OLG model

1.6.1 Population structure

• Growth model with overlapping generations (OLG) of consumers provides natural frame-
work for intertemporal decision problems with finite horizon

• Consider simplest case with stationary population of two-period lived consumers:

◦ new generation of N ≥ 0 consumers born in each period t ≥ 0

◦ these consumers live for two periods, die at end of t + 1

◦ generational index j ∈ {y, o} identifies ’young’ and ’old’ generation in t ≥ 0

• Young consumer in period t:

◦ supplies one unit of labor

◦ saves/invests st

◦ consumes cyt

• Old consumer in period t:

◦ supplies capital kt = st−1

◦ consumes cot

22



1.6.2 Consumer behavior

• A young consumer in period t ≥ 0

◦ labor income wt > 0 in t, no labor income in t+ 1

◦ chooses savings st ≥ 0 and lifetime consumption (cyt , c
o
t+1) ≥ 0 subject to:

cyt = wt − st (23a)

cot+1 = Rt+1st (23b)

◦ lifetime utility function U(cy, co) := u(cy) + βu(co), β > 0

◦ decision problem:

max
s

{

u(wt − s) + βu(sRt+1) | 0 ≤ s ≤ wt

}

(24)

• Impose Assumption 1.2 on utility u.
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• Optimal decision:

◦ special case of decision problem (T = 1, e0 = wt, e1 = 0)

◦ unique solution determined by first order conditions

Lemma 1.2 Let Assumption 1.2 be satisfied. Then, for each (wt, Rt+1) ≫ 0, there exists
a unique solution st to (24) determined by

u′(wt − st)−Rt+1 βu
′(stRt+1) = 0. (25)

• Aggregate investment made at time t determines next periods’s capital stock:

Kt+1 = Nst (26)

• Defining per-capita capital stock kt := Kt/N , (25) can be written as:

u′(wt − kt+1)−Rt+1 βu
′(kt+1Rt+1) = 0. (27)

• Consumption in t satisfies:
cyt = wt − kt+1. (28)

• Old consumer in period t ≥ 0 consumes his entire (capital) income:

cot = Rtkt. (29)
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1.6.3 Production side

• Representative firm produces output Y using labor and capital as inputs:

Y = F (K,L) (30)

• Linear homogeneous technology F can be written as:

Y = Lf(K/L) where f(k) := F (k, 1) (31)

• Remark: Interpret f as a gross production function that includes non-depreciated capital

Assumption 1.3 The intensive form production function f : R+ −→ R+ is C2 with derivatives
satisfying f ′′ < 0 < f ′, limk→0 f

′(k) = ∞, and limk→∞ f ′(k) < 1.

• Given (wt, Rt) ≫ 0, firm chooses input demand to maximize profits:

max
K,L

{

Lf

(
K

L

)

− RtK − wtL | (K,L) ∈ R
2
+

}

(32)

• FOCs of (32) determine equilibrium factor prices as function of capital intensity kt =
Kt

Lt
:

wt = W(kt) := f(kt)− ktf
′(kt) (33a)

Rt = R(kt) := f ′(kt) (33b)
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1.6.4 Equilibrium

• OLG economy is summarized by the list EOLG = 〈u, β, f〉

• Following definition of equilibrium is standard

Definition 1.1 Given k0 > 0, an equilibrium of EOLG consists of prices (we
t , R

e
t )t≥0 and an

allocation (ket+1, c
y,e
t , co,et )t≥0 which satisfy equations (27), (28), (29), and (33) for all t ≥ 0.

• Questions:

◦ existence of equilibrium?

◦ uniqueness of equilibrium?

◦ dynamic behavior of equilibrium?

• To answer them, will exploit recursive structure of equilibrium derived next
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1.6.5 Recursive structure of equilibrium

• Given k > 0, define for each 0 < k+ <W(k) the function

H(k+; k) := u′(W(k)− k+)− βR(k+) u
′(k+R(k+)). (34)

• Equilibrium sequence (ket+1)t≥0 satisfies H(ket+1; k
e
t ) = 0 for all t ≥ 0 and determines all

other equilibrium variables

• Uniqueness result derived below requires either of the following additional restriction:

Assumption 1.4 (a) The production function f satisfies kf ′′(k)
f ′(k)

≥ −1 for all k > 0.

(b) The utility function u satisfies cu′′(c)
u′(c)

≥ −1 for all c > 0.

• Prove the following auxiliary result:

Lemma 1.3 Under Assumptions 1.2 and 1.3, the following holds:

(i) The function H(·; k) defined in (34) has at least one zero for all k > 0.

(ii) If, in addition either (a) or (b) of Assumption 1.4 hold, this zero is unique.
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• Lemma 1.3 allows us to state the following main result:

Proposition 1.2 Under Assumptions 1.2 and 1.3, the following holds for all k0 > 0:

(i) Economy EOLG has at least one equilibrium.

(ii) If, in addition, either (a) or (b) of Assumption 1.4 hold, this equilibrium is unique.

• Observations:

◦ additional restrictions in Assumption 1.4 ensure existence of a map K : R++ −→ R++

which determines the unique solution k+ = K(k) to (34) for each k > 0

◦ by the implicit function theorem, K is C1, strictly increasing, and satisfies

0 < K(k) <W(k) < f(k) (35)

◦ unique equilibrium sequence (ket+1)t≥0 determined recursively by ke0 = k0 and

ket+1 = K(ket ), t ≥ 0. (36)

• To study equilibrium dynamics, need basic concepts from dynamical systems theory.
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1.7 Dynamical systems in discrete time

1.7.1 State space, time-one map, orbits

• Let X ⊂ R
N be

◦ a non-empty (typically: open/closed, convex) set

◦ endowed with Euclidean norm ‖ · ‖ and relative topology

• Let ϕ : X −→ X be a function which maps X into itself

• (ϕ,X) is a deterministic dynamical system with time-one-map ϕ and state space X

• Each x0 ∈ X induces a sequence {xt}t≥0 defined recursively as

xt+1 = ϕ(xt) = ϕ(ϕ(xt−1)) = ϕ2(xt−1) = ϕt+1(x0), t > 0.

where ϕt = ϕ ◦ . . . ◦ ϕ
︸ ︷︷ ︸

t - times

: X −→ X, t > 0 and ϕ0 := idX

• For each x0 ∈ X, call
Γ(x0) := (ϕt(x0))t≥0

the orbit of x0 (under ϕ)
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1.7.2 Fixed points and stability

• Of particular interest: Points x̄ ∈ X which are limits of orbits and for which the dynamics
become ’steady’

Definition 1.2 A fixed point of dynamical system (X, ϕ) is a value x̄ ∈ X for which x̄ = ϕ(x̄).

• Orbit Γ(x̄) = (x̄, x̄, . . .) is the constant sequence

• For which initial values x0 ∈ X does Γ(x0) converge to fixed point x̄, i.e.,

lim
t→∞

ϕt(x0) = x̄. (37)

Definition 1.3 A fixed point x̄ ∈ X of a dynamical system (ϕ,X) is called

(i) locally asymptotically stable, if there exists a neighborhood U ⊂ X containing x̄ such that
limt→∞ ‖ϕt(x)− x̄‖ = 0 for all x ∈ U .

(ii) globally asymptotically stable if limt→∞ ‖ϕt(x)− x̄‖ = 0 for all x ∈ X.

(iii) unstable if it is not locally asymptotically stable.
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• Clear:

◦ global stability implies local stability

◦ global stability requires ϕ to have a unique fixed point in X

• Terminology:

◦ unless stated otherwise, ’stable’ taken to mean ’locally asymptotically stable’

◦ fixed points synonymously referred to as ’steady states’
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1.7.3 Analyzing the dynamics with phase diagrams

• done in class.
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1.7.4 The Grobman-Hartman theorem

• Assume:

◦ state space X ⊂ RN is an open set

◦ time-one map ϕ is continuously differentiable (C1)

• Next result:

◦ sufficient criterion to infer local stability of x̄ from Jacobian matrix Dϕ(x̄)

◦ write ϕ = (ϕ(1), . . . , ϕ(N)) where ϕ(n) : X −→ R, n = 1, . . . , N

Lemma 1.4 (Grobman-Hartman Theorem) Let ϕ be C1 and x̄ ∈ X be a steady state of
ϕ. Denote by λn ∈ C, n = 1, . . . , N the Eigenvalues of the Jacobian matrix

Dϕ(x̄) =






∂ϕ(1)

∂x(1) (x̄) . . . ∂ϕ(1)

∂x(N) (x̄)
...

. . .
...

∂ϕ(N)

∂x(1) (x̄) . . . ∂ϕ(N)

∂x(N) (x̄)




 ∈ R

N×N .

Then the following holds true:

(i) If |λn| < 1 for all n ∈ {1, . . . , N}, then x̄ is locally asymptotically stable.

(ii) If |λn| > 1 for at least one n ∈ {1, . . . , N}, then x̄ is unstable.
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• In this course, we will mostly consider models where N = 1 in which case X ⊂ R and the
dynamics are one-dimensional

• A straightforward corollary to Lemma 1.4 is the following

Corollary 1.1 Let ϕ be C1 on X ⊂ R and x̄ ∈ X be an interior steady state of ϕ. Then,
the following holds:

(i) If |ϕ′(x̄)| < 1, then x̄ is locally asymptotically stable.

(ii) If |ϕ′(x̄)| > 1, then x̄ is unstable.

• Remarks:

◦ a fixed point x̄ for which |ϕ′(x̄)| 6= 1 is called hyperbolic

◦ only stability properties of hyperbolic fixed points can be inferred from ϕ′(x̄)

◦ in the non-hyperbolic case |ϕ′(x̄)| = 1, additional conditions must be checked.
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1.8 Equilibrium dynamics in the OLG model

1.8.1 Existence and non-existence of steady states

• Know:

◦ equilibrium dynamics in OLG model determined by map K defined in Section 1.6.5

◦ K is C1, strictly increasing, and bounded by W

• But: Existence of a non-trivial steady state k̄ > 0 not guaranteed, may well have

K(k) < k

for all k > 0 (’impoverishment’).

• Sufficient condition to exclude this and ensure existence of steady state k̄ > 0 is

lim
kց0

K′(k) > 1.

• Monotonicity of K:

◦ implies monotonic convergence/divergence of all orbits

◦ excludes cyclical behavior
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1.8.2 Uniqueness and multiplicity of steady states

• Existence of a steady state does not imply uniqueness

• Examples discussed in class.

• For further discussion and explicit restrictions on fundamentals to obtain existence/uniqueness
see Galor & Ryder (1989)
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2 Decision problems with infinite time horizon

2.1 A prototype consumption investment problem

2.1.1 Decision setup

• Consider the same problem as in Section 1.2 but with T = ∞

• Planing horizon T := {0, 1, 2, . . .} is now (countably) infinite

• Given variables:

◦ sequence of non-capital incomes e∞ = (et)t∈T ≥ 0

◦ sequence of capital returns R∞ = (Rt)t∈T ≫ 0

◦ initial capital s̄−1 (to be restricted)

• Decision variables:

◦ consumption plan (ct)t∈T ≥ 0

◦ investment plan (st)t∈T
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2.1.2 NPG-condition and intertemporal budget set

• As before, feasible plans satisfy budget equation

ct + st ≤ et +Rtst−1 (38)

for all t ∈ T where s−1 = s̄−1

• For t > 0, define and interpret

qt := R−1
1 . . . R−1

t =
t∏

n=1

R−1
n (39)

as price of time t consumption in units of time zero consumption [why?]

• Using (39), we also impose the No-Ponzi Game (NPG) condition

lim
t→∞

qtst ≥ 0. (40)

• Interpretation of (40): All loans must ultimately be repaid!

• Feasible plans are defined by budget set:

B(e∞, R∞, s̄−1) =
{

(ct, st)t∈T| ct ≥ 0, (38) holds for all t ∈ T, (40) holds
}

(41)

38



2.1.3 Preferences and decision problem

• Preferences over consumption plans (ct)t∈T ∈ RT
+ represented by utility function

U((ct)t∈T) :=
∞∑

t=0

βtu(ct), 0 < β < 1. (42)

• Decision problem:

max
{

U((ct)t∈T)
∣
∣
∣(ct, st)t∈T ∈ B(e∞, R∞, s̄−1)

}

. (43)

• Maintain Assumption 1.2 on utility and assume that 0 < β < 1.

• Remark:

◦ we will set aside problems with infinity by assuming that incomes (et)t∈T and prices
(qt)t∈T are ’well-behaved’ such that |U((ct)t∈T)| <∞ for all (ct, st)t∈T ∈ B(e∞, R∞, s̄−1)

◦ explicit conditions under wihch this holds can easily be formulated.
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2.1.4 Lifetime budget constraint

• Remainder assumes that (38) holds with equality for all t (due to monotonic preferences)

• Use (38) (with equality) to recursively eliminate (st)t∈T from decision

• Using (39), obtain for all T ≥ 1:

qT sT =
T∑

t=0

qt(et − ct) +R0s̄−1. (44)

• Taking the limit T → ∞ and using (40) gives

∞∑

t=0

qtct

︸ ︷︷ ︸

lifetime consumption expenditure

≤

∞∑

t=0

qtet

︸ ︷︷ ︸

lifetime income

+ R0s̄−1
︸ ︷︷ ︸

initial capital income

. (45)

• We will assume the solvency condition that lifetime wealth is positive and finite:

0 < M :=
∞∑

t=0

qtet +R0s̄−1 <∞. (46)
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• Can now write (44) as
∞∑

t=0

qtct ≤M. (47)

to obtain lifetime budget set:

B̃(q∞,M) :=
{

(ct)t∈T| (46) holds ∧ ct ≥ 0 ∀t ∈ T

}

. (48)

where q∞ := (qt)t∈T.

• Can state (43) in the following equivalent form:

max
{

U((ct)t∈T)
∣
∣
∣(ct)t∈T ∈ B̃(q∞,M)

}

. (49)

• Given a solution (c∗t )t∈T to (49), can easily recover optimal savings (s∗t )t∈T from (44).
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2.2 Solving the problem by Lagrangian methods

• Under conditions satisfied here, Lagrangian techniques also applicable in infinite-dimensional
cases (cf. Dechert (1982) or Le Van & Saglamb (2004))

• Define the Lagrangian function

L ((ct, µt)t∈T, λ) :=
∑

t∈T

[

βtu(ct) + µtct

]

+ λM − λ
∑

t∈T

qtct

• As in the finite-dimensional case, (c∗t )t∈T ≥ 0 solves (49) if there exist non-negative
Lagrangian multipliers (µ∗

t )t∈T and λ∗ ≥ 0 such that the first order conditions (FOCs):

∂L

∂ct
((ct, µt)t∈T, λ) = βtu′(ct) + µt − λqt = 0 ∀t ∈ T (50)

the complementary slackness conditions (CSCs):

µtct = λM − λ
∑

t∈T

qtct = 0 (51)

and (47) are satisfied for all t.

• Arguments analogous to Section 1.2 yield µ∗
t = 0 for all t ∈ T and λ∗ > 0.
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Proposition 2.1 Let Assumption 1.2 and the solvency condition (46) hold. Then, any se-
quence (c∗t )t∈T which solves

β
u′(ct+1)

u′(ct)
=

qt+1

qt
=

1

Rt+1

∀t ∈ T (52)

∑

t∈T

qtct =
∑

t∈T

qtet +R0s̄−1 (53)

is a solution to (49).

• Equation (53) implies that optimal investment sequence (s∗t )t∈T defined by (44) satisfies

lim
t→∞

qts
∗
t = 0 (54)

• We will call (54) the transversality condition (TVC)

• As the optimal solution satisfies (52) for all t, qt = βtu′(c∗t )/u
′(c∗0)

• As u′(c∗0) is just a constant, the TVC can equivalently be written as

lim
t→∞

βtu′(c∗t )s
∗
t = 0 (55)
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• As (53) and (54) are equivalent, solution to original problem (43) can be characterized
as:

Proposition 2.2 Let Assumption 1.2 and the solvency condition (46) hold. Then, any se-
quence (c∗t , s

∗
t )t∈T which satisfies

β
u′(ct+1)

u′(ct)
=

qt+1

qt
=

1

Rt+1
(56)

ct + st = et +Rtst−1 (57)

for all t ∈ T (where s−1 = s̄−1) as well as the TVC (54) is a solution to (43).

• Remark:

◦ Although not obvious, the TVC is in fact a restriction on initial consumption c0!

◦ Will get back to this in Section 2.6
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2.3 Solving the problem by variational methods

• Can also employ the following variational argument to obtain (52)

• Consider a variation of the optimal decision (c∗t )t∈T in period t0 setting

c̃t0 = c∗t0 − δ

c̃t0+1 = c∗t0+1 + δRt0+1

where δ is a small number.

• All other choices remain unchanged, can write utility as function H of δ:

H(δ) := βt0u(c∗t0 − δ) + βt0+1u(c∗t0+1 + δRt0+1) +
∑

t∈T\{t0 ,t0+1}

βtu(c∗t ). (58)

• Since (c∗t )t∈T is optimal, H must be maximal for δ = 0. This implies H ′(0) = 0 which
gives (52) for all t.
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2.4 An equilibrium framework: The neoclassical growth model

• Embed previous problem into a dynamic macro-model with

◦ a consumption sector consisting of N identical infinite-lived consumers

◦ a production sector represented by a single firm

2.4.1 Consumption sector

• Each consumer:

◦ planes over infinitely many future periods T = {0, 1, 2, . . .} as in Section 2.1

◦ supplies one unit of labor to the labor market in each period t

◦ consumes ct, invests st which becomes capital kt+1 in t+ 1

◦ capital earns return Rt, labor the wage wt in t

• As consumers are identical, so are the decisions they take!

2.4.2 Production sector

• Production sector identical to Section 1.6.3, impose Assumption 1.3 on f

• Given labor Lt = N and capital Kt = Nkt, factor prices wt and Rt determined by (33)
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2.4.3 Consumer behavior

• Given her initial capital k0 > 0, consumer chooses non-negative consumption-capital
sequence (ct, kt+1) subject to budget constraint

kt+1 + ct = wt + ktRt, ∀t ∈ T (59)

to maximize utility U((ct)t∈T) given by (42)

• Decision problem special case of (43) (where et = wt, st = kt+1, s̄−1 = k0 > 0)

• By Proposition 2.2, optimal decision characterized by (59), the Euler equations

β
u′(ct+1)

u′(ct)
= R−1

t+1 ∀t ∈ T (60)

and the transversality condition

lim
t→∞

βtu′(ct)kt+1 = 0. (61)

2.4.4 Equilibrium

• Economy is summarized by the list ENC = 〈u, β, f〉

Definition 2.1 Given k0 > 0, an equilibrium of ENC is an allocation (cet , k
e
t+1)t≥0 and a price

sequence (we
t , R

e
t )t≥0 which satisfy (33), (59), (60), and (61)
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2.5 Equilibrium dynamics in state space form

• Equilibrium allocation solves the following implicit equations for all t ≥ 0 by:

kt+1 + ct − f(kt) = 0 (62a)

βu′(ct+1)f
′(kt+1)− u′(ct) = 0. (62b)

• As u′ is strictly decreasing and therefore, invertible, obtain explicit form of (62):

kt+1 = ϕk(kt, ct) := f(kt)− ct (63a)

ct+1 = ϕc(kt, ct) := u′−1

(
u′(ct)

βf ′(f(kt)− ct)

)

. (63b)

• System (63) represents the equilibrium dynamics in state space form

• ϕ = (ϕk, ϕc) defined on

X =
{

(k, c) ∈ R
2
++|c < f(k)

}

(64)

but will see that (ϕ,X) is not a dynamical system!

• Interior steady states (k̄, c̄) ≫ 0 of (63) solve f ′(k̄) = 1/β and c̄ = f(k̄)− k̄

• Show: Under Assumptions 1.2 and 1.3, there exists a unique interior steady state (k̄, c̄)
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2.6 A geometric interpretation of the transversality condition

2.6.1 An unstable steady state which is saddle-path stable

• System (63) offers nice geometric characterization of the TVC

• Will show this for special case where u(c) = log c1 and f(k) = kα, 0 < α < 1

• All qualitative insights extend to general case!

• Under previous parametrization, mapping ϕ in (63) reads:

ϕk(k, c) = kα − c (65a)

ϕc(k, c) = αβc (kα − c)α−1 . (65b)

• Show (see Galor (2007) for additional details!):

◦ system (65) has unique steady state x̄ := (k̄, c̄)

◦ Jacobian Dϕ(x̄) has (real) Eigenvalues |λ1| < 1 < |λ2|

◦ thus, x̄ is unstable, in fact, saddle-path stable (cf. Problem 2.2 (iii) on PS 2!)

◦ but: convergence towards x̄ on lower-dimensional subset M ⊂ X (stable manifold)

1Recall Section 1.5 and the remarks given there!
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2.6.2 The stable manifold

• To determine M, define zt := ct/k
α
t which evolves as

zt+1 = ψ(zt) := αβ
zt

1− zt
(66)

where ψ is defined on ]0, 1[, but (ψ, ]0, 1[) is not a dynamical system!

• Dynamic properties of ψ [show!]:

◦ ψ has unique non-trivial steady state z̄ = 1− αβ > 0 which is unstable

◦ for z0 < z̄, limt→∞ ψt(z0) = 0 which implies limt→∞ ct = 0 whenever c0 < z̄kα0

◦ for z0 > z̄, ψt0(z0) > 1 for finite t0 ≥ 1 which implies kt0+1 < 0 whenever c0 > z̄kα0

• Sequence (kt, ct)t≥0 generated by (65) well-defined and does not diverge iff c0 = z̄kα0

• Conclude that:

◦ stable manifold is M = {(k, c) ∈ R2
++|c = (1− αβ)kα}

◦ equilibrium allocation satisfies (ket , c
e
t) ∈ M for all t ≥ 0 and limt→∞(ket , c

e
t ) = (k̄, c̄)

◦ condition c0 = z̄kα0 is equivalent to TVC (61) (cf. picture in class)

◦ ENC has a unique equilibrium which also holds in the general case!
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2.7 A planning problem

• There is an alternative foundation for the equilibrium dynamics in the neoclassical model

• Consider a benevolent social planner who maximizes consumer utility by choosing a fea-
sible allocation.

Definition 2.2 Given k0 > 0, a feasible allocation is a sequence (ct, kt+1)t≥0 which sat-
isfies ct ≥ 0, kt+1 ≥ 0 for all t ≥ 0 as well as the resource constraint

kt+1 + ct ≤ f(kt). (67)

The set of feasible allocations is denoted A(k0).

• The planning problem reads:

max
(ct,kt+1)t∈T

{

U((ct)t∈T)
∣
∣
∣ (ct, kt+1)t∈T ∈ A(k0)

}

(68)

• Will see that the solution to (68) coincides with the equilibrium allocation!
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2.8 Solving the planning problem by Lagrangian methods

• To solve (68), can use a variational argument as in Section 2.3 (or a Lagrangian approach
as in Section 2.2) to obtain the conditions (62) for all t ≥ 0.

• Will prove that if the solution to (62) satisfies the TVC (61), it solves the SPP (68).

Proposition 2.3 Under Assumptions 1.2 and 1.3, the following holds for all k0 > 0:

(i) Any sequence (c∗t , k
∗
t+1)t≥0 which solves (62) for all t ≥ 0 and (61) is a solution to (68).

(ii) Any solution to (68) is unique.

Proof: Done in class.

• Previous result implies that equilibrium allocation is unique which in turn implies a unique
equilibrium (why?)

• Solutions to (68) are precisely the Pareto-optimal allocations of ENC (why?)

• Thus,there is an equivalence between equilibrium and Pareto optimal allocations

• Economically, this is a consequence of the first and second Welfare Theorems!

• Note that Proposition 2.3 does not, in general, deliver an existence result! This will be
obtained next using recursive methods similar to Section 1.3.
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2.9 Solving the planning problem by recursive methods

2.9.1 The Bellman equation

• Assume that f satisfies Assumption 1.3 and u the (weaker) Assumption 1.1 and 0 < β < 1

• For each k > 0, define

V (k) := sup
(ct,kt+1)t∈T

{

U((ct)t∈T)
∣
∣
∣ (ct, kt+1)t∈T ∈ A(k)

}

(69)

• We assume that the economy E is well-behaved such that V (k) <∞ for all k > 0

• Principle of optimality implies that V solves functional equation (Bellman-equation):

V (k) = max
c,k+

{

u(c) + βV (k+)
∣
∣
∣ c ≥ 0, k+ ≥ 0, k+ + c ≤ f(k)

}

(70)

or, equivalently,

V (k) = max
k+

{

u(f(k)− k+) + βV (k+)
∣
∣
∣ 0 ≤ k+ ≤ f(k)

}

(71)

• The solution V to (71) is called the value function
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2.9.2 Existence of a solution to the Bellman equation

• For the following results, see Stokey & Lucas (1989) or Stachurski (2009)

• Following holds if u is bounded:

◦ Bellman equation (70) has a unique solution V : R+ −→ R which is also bounded,
strictly increasing, and strictly concave

◦ V is a fixed point of an operator T which maps the space C (R+) of bounded con-
tinuous functions G : R+ −→ R into itself, i.e., T : C (R+) −→ C (R+) and TV = V

◦ T is a contraction on C (R+) which is a Banach space under the sup-norm.

◦ By the Contraction Mapping Theorem, V is unique and limn→∞ T nG = V for all
G ∈ C (R+) (where convergence is in the sup-norm)

◦ This implies that V is continuous, increasing, and concave.

• Essentially same results hold if u not bounded but homogeneous of degree θ ≤ 1, cf. Al-
varez & Stokey (1998) (as in Problems 1.1 and 3.1 which essentially have θ = 1− σ)
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2.9.3 Policy function and an existence theorem

• Knowing V , can compute the policy function K : R+ −→ R+,

K(k) = argmax
k+

{

u(f(k)− k+) + βV (k+)
∣
∣
∣ 0 ≤ k+ ≤ f(k)

}

. (72)

which determines optimal capital formation kt+1 in t as a function of current capital kt.

• Policy function K is continuous by the Theorem of the Maximum (cf. Stokey & Lucas
(1989, Theorem 3.6, p.62)) and satisfies 0 < K < f .

• Given K, define the consumption function C : R+ −→ R+,

C(k) := f(k)−K(k) (73)

which determines optimal consumption ct in period t as a function of current capital kt.

• Following is the main result of this section.

Proposition 2.4 Let V be the solution to (70) and define K and C as in (72) and (73). Then,
the sequence (k∗t+1, c

∗
t )t≥0 defined recursively for t ≥ 0 as:

k∗t+1 = K(k∗t ) (74a)

c∗t = C(k∗t ) (74b)

where k∗0 = k0 is a solution to (68).
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2.9.4 Differentiability of the value function V

• Let u satisfy the stronger Assumption 1.2 and f satisfy Assumption 1.3 and f(0) = 0.
These restrictions imply an interior solution to (71) for all k > 0.

• To recover first order conditions (62) of SPP (68) from (71) V would need to be differen-
tiable to apply the envelope theorem as in Section 1.4.2

• As argued above, V obtains as the limit of continuous functions (under the sup norm)
and is, therefore, continuous but need not be differentiable!

• However, can apply the Beneviste-Scheinkman Theorem to prove that V is differentiable
(cf. Stokey & Lucas (1989), Theorems 4.10 and 4.11, pp.84/85) and satisfies for all k > 0:

V ′(k) = u′(f(k)−K(k))f ′(k) (75)

• In this case, k+ = K(k) is determined by the first order conditions

u′(f(k)− k+) + βV ′(k+) = 0. (76)

• Combining (75) and (76) and setting C(k) := f(k)−K(k) gives for all k > 0:

u′(C(k)) + βf ′(k+)u
′(C(k+)) = 0 (77)

which implies Euler equation (62b) when (77) is evaluated at optimal sequence (k∗t )t≥0

generated by (74a).
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2.10 A beautiful result that connects the two approaches

• Following is the nexus between the

1. Lagrangian approach from Section 2.2 which gave us the dynamics (63) in state space
form

2. recursive approach from Section 2.9 which gave us the policy functions (72) and (73)

• Let x̄ = (k̄, c̄) be the unique interior steady state of ϕ = (ϕk, ϕc) from (63) defined on X

as in (64). Define the stable manifold

M :=
{

x = (k, c) ∈ X |ϕt(k, c) ∈ X ∀t ≥ 0 ∧ lim
t→∞

ϕt(k, c) = (k̄, c̄)
}

. (78)

• Let K be the policy defined in (72) and C the consumption function (73). Define its graph

graph(C) :=
{

(k, c) ∈ X | c = C(k)
}

. (79)

• Then, we have:
M = graph(C). (80)

57



Mathematical Methods, Part 1:

Applied Intertemporal Optimization

Part II

Winter term 2015/16

Lecturer: Marten Hillebrand

Teaching assistant: Van Hoang Khieu



Part II

Stochastic Models in Discrete Time

59



3 Setting up a random environment

• In a stochastic world, all quantities take the form of random variables

• We will first review some basic concepts from probability theory required for our purposes

• Following structure is very condensed. You are strongly encouraged to consult Stachurski
(2009) for a more in-depth treatment.

• In the sequel we work with infinite discrete time periods T = {0, 1, 2, . . .}.

• If A is any set, 2A or Pow(A) denotes the power set, i.e., the class of all subsets of A.
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3.1 Basic concepts from probability theory

3.1.1 Probability spaces and random variables

• Randomness in our model enters via an exogenous stochastic process (θt)t≥0, i.e., a se-
quence of random variables with values in Θ ⊂ RN , N ≥ 1.

• All these random variables live on an underlying probability space (Ω,F ,P), where:

◦ Ω is the sample space which represents all possible states of the world

◦ F ⊂ Pow(Ω) is a collection of subsets of Ω that form a σ-algebra, i.e., (i) Ω ∈ F , (ii)
A ∈ F implies Ac := Ω\A ∈ F and (iii) (An)n≥0, An ∈ F ∀n implies ∪∞

n=0An ∈ F .

◦ P : F −→ [0, 1] is a probability measure, i.e., a countably additive function satisfying
P(Ω) = 1 that assigns probabilities P(A) to each measurable subset A ∈ F of Ω

• Θ is endowed with some σ-algebra A ⊂ Pow(Θ) to become a measurable space (Θ,A )

• Since Θ ⊂ RN is a topological space, we can (and typically do) choose for A the Borel-σ
algebra B(Θ) which is the smallest σ-algebra containing the topology

• For each t ∈ T, the mapping θt : Ω −→ Θ is F −B(Θ) measurable, i.e., for all B ∈ B(Θ),
θ−1
t (B) := {ω ∈ Ω|θt(ω) ∈ B} ⊂ Ω is an element of F .
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3.1.2 Probability and distributions of random variables

• For each t ∈ T, can construct probability distribution/measure µt of random variable θt:

◦ given a set B ∈ B(Θ), µt(B) is the probability that θt ∈ B

◦ straightforward to construct µt by defining the image measure

µt(B) = P
(
θ−1
t (B)

)
= P ({ω ∈ Ω|θt(ω) ∈ B}) (81)

◦ mapping µt : B(Θ) −→ [0, 1] is indeed a probability measure on (Θ,B(Θ)) and
called the probability distribution of θt

◦ if Θ = R, there is a one-to one correspondence between distribution µt and the
distribution function Ft(b) := µt(]−∞, b]), b ∈ R. Similar result holds if N > 1.

• Analogously, construct joint distribution µI of random variables θI := (θt)t∈I for any I ⊂ T

• Further, can infer the distributions of random variables defined by measurable functions

◦ f : Θ −→ X ⊂ RM of θt

◦ f : ΘI −→ X ⊂ RM of θI

with values in the measurable space (X,B(X))
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3.2 Constructing the underlying probability space

• Previous result: Given (Ω,F ,P) and measurable mappings (θt)t, can compute probability
distributions of all random variables (θt)t∈I, I ⊂ T and of all measurable functions of these
random variables

• Can also reverse the previous construction:

◦ specify distributions/dependence structure of the random variables (θt)t∈T

◦ construct an underlying probability space (Ω,F ,P) consistent with this.

3.2.1 Example 1: Independent random variables

• Suppose we want (θt)t≥0 to consist of independent random variables wit values in Θ each
having a desired probability distribution µ : B(Θ) −→ [0, 1], say, a normal distribution.

• In this case, define:

◦ Ω = ΘT (the set of sequences with values in Θ)

◦ F = B(Ω) (the product σ-algebra generated by measurable rectangles or, equiva-
lently, the Borel σ-algebra when Ω is endowed with the product topology)

◦ P = µT (the product measure which satisfies µT(Ω × . . .× Ω × A × B × Ω× . . .) =
µ(A) · µ(B) for any A,B ∈ B(Θ) )
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3.2.2 Example 2: Correlated random variables

• Suppose we want (θt)t∈T to follow an auto-regressive structure of the form

θt =Mθt−1 + εt, t ≥ 1, (82)

where M ∈ RN×N and (εt)t≥1 consists of i.i.d. random variables with values in E ⊂ RN

and distribution µε which are independent of θ0 which has distribution µ0.

• In this case, can also construct (Ω,F ,P) by defining Ω = Θ×EN, F = B(Ω), P = µ0⊗µ
N
ε .

• Noting that θt = Atθ0 +
∑t−1

n=0M
nεt−n we can compute µt for each t > 0 via (81)

• For later reference, note that (121) defines a transition probability, i.e., a mapping Q :
Θ× B(Θ) −→ [0, 1] such that Q(θ, A) is the probability that θt+1 ∈ A given that θt = θ

• For all θ ∈ Θ and A ∈ B(Θ), Q can explicitly be constructed as

Q(θ, A) = µε{ε ∈ E|Mθ + ε ∈ A} (83)

• The distributions (µt)t∈T can then be computed recursively for t ≥ 1 as

µt(B) =

∫

Θ

Q(θ, B)µt−1(dθ). (84)

for each B ∈ B(Θ).
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3.3 Filtration and conditional expectation

• Let (θt)t≥0 be the exogenous stochastic process on (Ω,F ,P) defined previously.

• In our equilibrium framework derived below, all endogenous variables will take the form of
random variables (Xt)t≥0 with values in X ⊂ RM which depend on the exogenous process.

• We generally take the notation (Xt)t≥0 to mean that Xt is observable in period t, i.e., can
only depend on exogenous random variables θn, n ≤ t.

• To impose this restriction formally, define a filtration (Ft)t≥0 where Ft ⊂ F is the
smallest σ-algebra such that each θn, 0 ≤ n ≤ t is Ft-B(Θ) measurable.

• Process (Xt)t∈T is said to be adapted (to (Ft)t≥0) if each Xt is Ft − B(X) measurable.
This captures exactly the idea that Xt can depend only on random variables θn, n ≤ t

• Specifically, if (Xt)t∈T is adapted and Et[·] := E[·|Ft] is the expectations operator condi-
tional on observations up to time t, Et[Xn] = Xn for all t and n ≤ t.

• IfXt has distribution µXt
: B(X) −→ [0, 1] and is integrable, its unconditional expectation

is defined as

E[Xt] :=

∫

Ω

Xt(ω)P(dω) =

∫

X

xµXt
(dx). (85)
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4 Stochastic decision problems with finite horizon

4.1 A stochastic OLG model

• Consider a stochastic version of the OLG model from Section 1.6 similar to Wang (1993):

◦ all assumptions on population structure, labor supply, etc. remain the same

◦ but: production side modified to incorporate random production shocks

• We continue to denote equilibrium variables as (Xt)t≥0 but these are now adapted stochas-
tic processes rather than just sequences.

• All equalities and inequalities involving random variables are assumed to hold P-almost
surely without explicit notice.
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4.1.1 Production side

• Suppose that production in period t is subject to multiplicative shock θt ∈ Θ ⊂ R++:

Yt = θtF (Kt, Lt) = θtLtf(kt) (86)

• Production shocks (θt)t≥0 consists of independent random variables with distribution µ
and values in Θ = [θmin, θmax] ⊂ R++.

• Thus, we can chose the underlying probability space (Ω,F ,P) exactly as outlined in
Section 3.2.1

• In each period t, the firm takes the current shock in period t as given and decides on
demand for capital and labor.

• Continue to impose Assumption 1.3 on f and define kt =
Kt

Lt
for all t ∈ T as before.

• The fist order conditions then determine equilibrium factor prices as:

wt = W(kt, θt) := θt[f(kt)− ktf
′(kt)] (87a)

Rt = R(kt, θt) := θtf
′(kt) (87b)
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4.1.2 A stochastic two-period decision problem

• Consider decision problem of a young consumer in period t ≥ 0:

◦ consumer observes her current labor income wt > 0 (which is a real number)

◦ capital return Rt+1 treated as random variable with values in [Rmin, Rmax] ⊂ R++

◦ knowing the underlying probabilistic structure, consumer computes correct condi-
tional expectation Et[·] of next period’s random variables

• Any investment decision st ∈ [0, wt] (which is a number!) determines lifetime consumption

cyt = wt − st (88a)

cot+1 = Rt+1st (88b)

where cyt ≥ 0 is a number and cot+1 a random variable with values in [stRmin, stRmax].

• Preferences over alternative random variables (cyt , c
o
t+1)possess an expected utility repre-

sentation with von-Nemann Morgenstern utility U(cy, co) = u(cy) + βu(co)

• Decision problem reads:

max
s

{

u(wt − s) + βEt [u(sRt+1)] | 0 ≤ s ≤ wt

}

(89)
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• Define consumer’s objective function Ut :]0, wt[−→ R,

Ut(s) := u(wt − s) + βEt [u(sRt+1)] (90)

• Imposing Assumption 1.2 on utility u, we obtain the following result:

Lemma 4.1 Under Assumption 1.2, the following holds:

(i) Ut in (90) is C2, strictly concave, and limsց0U
′
t(s) = − limsրwt

U ′
t(s) = −∞

(ii) Problem (89) has a unique interior solution s∗t determined by

u′(wt − s) = βEt [Rt+1u
′(sRt+1)] (91)

• Hint: When proving this result, exploit that in the present case, differentiation can be
interchanged with the expectations operator
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4.1.3 Deriving the equilibrium equations

• Aggregate investment made at time t determines next periods’s capital stock Kt+1 = Nst

• Defining kt+1 = Kt+1/N , (91) can be written as:

u′(wt − kt+1) = βEt [Rt+1u
′(kt+1Rt+1)] (92)

• Observations:

◦ by (87b), next period’s capital return determined by Rt+1 = θt+1f
′(kt+1)

◦ uncertainty in Rt+1 completely due uncertainty about shock which has distribution
µ independent of any other realizations at time t

◦ this permits (92) to be written as:

u′(wt − kt+1) = βEµ [R(kt+1, ·)u
′(kt+1R(kt+1, ·))] (93)

= β

∫

Θ

R(kt+1, θ)u
′(kt+1R(kt+1, θ))µ(dθ).

• Consumption of both generations in t satisfies:

cyt = wt − kt+1 (94a)

cot = Rtkt. (94b)
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4.1.4 Equilibrium

• Stochastic OLG economy is summarized by the list ESOLG = 〈u, β, f, µ〉

• Following definition of equilibrium is straightforward generalization of deterministic case.

Definition 4.1 Given k0 > 0, an equilibrium of ESOLG consists of adapted stochastic processes
of prices (we

t , R
e
t )t≥0 and an allocation (ket+1, c

y,e
t , co,et )t≥0 satisfying (87), (93), and (94) for all

t ≥ 0.

• Questions as in the deterministic case:

◦ existence of equilibrium?

◦ uniqueness of equilibrium?

◦ dynamic behavior of equilibrium?

• To answer them, will again derive recursive structure of equilibrium.
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4.1.5 Recursive structure of equilibrium

• Following ideas exactly analogous to deterministic case studied in Section 1.6.5

• Given k > 0 and θ ∈ Θ, define for each 0 < k+ <W(k, θ) the function

H(k+; k, θ) := u′(W(k, θ)− k+)− βEµ [R(k+, ·) u
′(k+R(k+, ·))] . (95)

• Equilibrium process (ket+1)t≥0 solves H(kt+1; kt, θt) = 0 for all t ≥ 0 and determines all
other equilibrium variables

• Following auxiliary result can be proved exactly as in the deterministic case:

Lemma 4.2 Under Assumptions 1.2 and 1.3, the following holds:

(i) The function H(·; k, θ) defined in (95) has at least one zero for all k > 0 and θ ∈ Θ.

(ii) If, in addition either (a) or (b) of Assumption hold, this zero is unique.
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• Lemma 4.2 allows us to state the following main result:

Proposition 4.1 Under Assumptions 1.2 and 1.3, the following holds for all k0 > 0:

(i) Economy ESOLG has at least one equilibrium.

(ii) If, in addition, either (a) or (b) of Assumption 1.4 hold, this equilibrium is unique.

• Observations:

◦ additional restrictions ensure existence of a map K : R++ × Θ −→ R++ which
determines the unique solution k+ = K(k, θ) to (34) for each k > 0 and θ ∈ Θ

◦ by the implicit function theorem, K is C1, strictly increasing, and satisfies

0 < K(k, θ) <W(k, θ) < f(k, θ). (96)

◦ unique equilibrium process (ket+1)t≥0 determined recursively by

ket+1 = K(ket , θt). (97)

• To study equilibrium dynamics, need some basic concepts from stochastic dynamical
systems theory
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5 Stochastic dynamical systems in discrete time

5.1 Stochastic dynamical systems and stability

• For more details, the reader is again referred to Stachurski (2009).

• Assume that endogenous state dynamics take the form F : X×Θ −→ X

xt+1 = F (xt, θt) (98)

where we now restrict attention to case where X = R+

• Also assume that exogenous process is i.i.d. with distribution µθ and values in Θ =
[θmin, θmax] ⊂ R++

• In the deterministic case, the state xt in period t is a real number

• In the stochastic case, the state xt in period t is a random variable which is completely
described by its distribution µt : B(X) −→ [0, 1]

• Thus, a steady state in the stochastic case is a distribution µ̄ (or a random variable x̄
which has this distribution) which remains invariant under (98).

• Thus, to compute a stochastic steady state of (98), we need to derive how the sequence
of distributions (µt)t≥0 of the random variables (xt)t≥0 evolve over time
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5.2 Markov operator

• Suppose x0 has distribution µ0, what is the distribution µt of xt for any t ≥ 1?

• As in Section 3.2.2, note that (98) defines a transition probability, i.e., a mapping Q :
X×B(X) −→ [0, 1] such that Q(x,A) is the probability that xt+1 ∈ A given that xt = x

• For all x ∈ X and A ∈ B(X), Q can explicitly be constructed as

Q(x,A) = µθ{θ ∈ Θ|F (x, θ) ∈ A} (99)

• The distributions (µt)t∈T can then be computed recursively for t ≥ 1 as

µt(B) =

∫

X

Q(x,B)µt−1(dx). (100)

for each B ∈ B(X).

• Let M (X) denote the class of probability measures on B(X)

• Then, can define an operator T : M (X) −→ M (X) which associates with any µ ∈ M (X)
the new probability measure Tµ defined for each B ∈ B(X) as

Tµ(B) =

∫

X

Q(x,B)µ(dx). (101)
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5.3 Stochastic steady states

• The concept of an invariant distribution is now straightforward:

Definition 5.1 An steady state of the stochastic dynamical system (98) is a probability
distribution µ̄ ∈ M (X) which is a fixed point of T , i.e., T µ̄ = µ̄.

• The stochastic analog of a steady state is therefore an invariant probability distribution

• Large literature which studies existence of invariant distributions for Markov operators

• Notion of stability requires limt→∞ T tµ0 = µ̄ where the limiting operation requires a
suitable notion of convergence of measures (most results on stability use the concept of
weak convergence, see Stokey & Lucas (1989)).

• Very general conditions for existence/uniqueness/stablity of invariant distributions if F
resp. T has certain monotonicity properties in Kamihigashi & Stachurski (2014)

• There is also a theory of Random Dynamical Systems due to Arnold (1998) which defines
the concept of a random fixed point.

• See Schenk-Hoppé & Schmalfuss (2001) for an economic application of this theory and
how it relates to the previous concepts
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5.4 Equilibrium dynamics in the stochastic OLG model

5.4.1 Stable sets

• Consider existence of stochastic steady states/invariant distributions of economy ESOLG

• Existence of stochastic steady states follows from the existence of stable sets :

Definition 5.2 A stable set of (97) is an interval [kmin, kmax] ⊂ R++ such that:

(i) K(kmin, θmin) = kmin

(ii) K(kmax, θmax) = kmax

(iii) K(k, θmin) < k < K(k, θmax) for all k ∈ [kmin, kmax]

• Existence of a stable set non-trivial steady state k̄ > 0 not guaranteed, fails if

K(k, θmax) < k (102)

for all k > 0 (impoverishment).

• Sufficient condition to exclude this and ensure existence is

lim
kց0

K′(k, θmin) > 1. (103)
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5.4.2 Existence of a stochastic steady state

• Following existence result due to Wang (1993):

Proposition 5.1 (Wang (1993)) If the equilibrium map K from (97) satisfies condition
(103), there exists at least one stochastic steady state/invariant probability distribution.

• Uniqueness of a stable sets not guaranteed, same multiplicity problem as in the deter-
ministic case.

• Uniqueness obtains, however, if for all θ ∈ Θ, K(·, θ) has a unique fixed point.

• This is a special case of the more general concept of a stable fixed point configuration
(cf. Brock & Mirman (1972)). Essentially, this requires that the largest fixed point of
K(·, θmin) be smaller than the smallest fixed point of K(·, θmax) (cf. the illustrations pro-
vided in class).

• Much more general existence results on stochastic steady states that also hold for a
much larger class of OLG economies can be found, e.g., in Morand & Reffett (2007) and
McGovern, Morand & Reffett (2013).
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6 Stochastic decision problems with infinite horizon

6.1 A prototype decision problem

• Consider the problem as in Section 2.2 with T := {0, 1, 2, . . .} but now with uncertainty

• In particular, we now:

◦ abstract from loans by requiring st ≥ 0.

◦ include the consumer’s labor-leisure choice ht ∈ [0, h̄] which determines labor supply

• Remainder normalizes maximum labor to h̄ = 1.
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6.1.1 Decision setup

• Given variables:

◦ adapted stochastic process of wages w∞ = (wt)t∈T

◦ adapted stochastic process of capital returns R∞ = (Rt)t∈T

◦ initial capital s̄−1 ≥ 0

• Decision variables:

◦ consumption plan: adapted stochastic process (ct)t∈T ≥ 0, ct ≥ 0 ∀t

◦ investment plan: adapted stochastic process (st)t∈T, st ≥ 0 ∀t

◦ labor supply plan: adapted stochastic process (ht)t∈T, 0 ≤ ht ≤ h̄ ∀t
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6.1.2 Intertemporal budget set

• Feasible plans must satisfy period budget equation

ct + st ≤ wtht +Rtst−1 (104)

for all t ∈ T where s−1 = s̄−1

• Feasible plans are defined by budget set:

B(w∞, R∞, s̄−1) =
{

(ct, ht, st)t∈T| ct ≥ 0, 0 ≤ ht ≤ 1, st ≥ 0, (104) holds for all t ∈ T

}

(105)
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6.1.3 Preferences and decision problem

• Utility in period t now depends on consumption ct ≥ 0 and leisure 0 ≤ ht ≤ 1 and given
by utility function

u : R+ × [0, ] −→ R, (c, h) 7→ u(c, h) (106)

• Preferences over consumption-labor processes (ct, ht)t∈T represented by utility function

U((ct, ht)t∈T) := E0

[
∞∑

t=0

βtu(ct, ht)

]

, 0 < β < 1. (107)

• Decision problem:

max
{

U((ct, ht)t∈T)
∣
∣
∣(ct, ht, st)t∈T ∈ B(e∞, R∞, s̄−1)

}

. (108)

Assumption 6.1 The utility function u in (106) is continuous, strictly concave and C2 on the
interior of its domain with partial derivatives satisfying

∂ccu < 0 < ∂cu and lim
cց0

∂cu(c, h) = ∞ (109a)

∂hhu < 0 < −∂hu and lim
hր1

∂hu(c, h) = −∞. (109b)

82



6.2 Solving the decision problem

• Following derivations impose Assumption 6.1

• Then, any solution to (108) will be interior, i.e., c∗t > 0 and 0 < h∗t < 1 due to (109)

• Can again use a variational argument to obtain following equations which characterize
solution

• For each t ≥ 0 and conditional on Ft, solution to (108) must satisfy the intratemporal
optimality condition

−
∂hu(ct, ht)

∂cu(ct, ht)
= wt (110)

and the intertemporal optimality condition (Euler equation)

Et

[

Rt+1
β∂cu(ct+1, ht+1)

∂cu(ct, ht)

]

= 1. (111)

• Further, for all t ≥ 0, the budget equality

ct + st = wtht +Rtst−1 (112)
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holds and the stochastic transversality condition (STVC)

lim
T→∞

E0

[

sT

T∏

t=0

R−1
t

]

= 0. (113)

• Remarks:

◦ that any process (c∗t , s
∗
t , h

∗
t )t∈T ∈ B(e∞, R∞, s̄−1) satisfying (110), (111), (112) for all

t ∈ T as well as (113) is indeed a solution to (108) can be proved along the lines of the
proof of Proposition 2.3 done in class (exploiting the law of iterated expectations!).

◦ one can also show by using the same arguments as in the proof of Proposition 2.3
that the solution to (108) is P-a.s. unique.

◦ we could also - somewhat mechanically - have used a Lagrangian approach to obtain
the previous conditions, but it is not quite clear how derivatives conditional on Ft

should be interpreted.

84



6.3 An equilibrium framework: The RBC model

• Consider a stochastic version of the neoclassical growth model from Section 2.4 with
endogenous labor supply:

◦ production side modified to incorporate random production shocks

◦ consumer side modified to include labor-leisure choice, decision problem solved under
uncertainty as in Section 6.1

◦ unless stated otherwise, all other assumptions remain the same as in Section 2.4

• We continue to denote equilibrium variables as (Xt)t≥0 but these are now adapted stochas-
tic processes rather than just sequences.

• All equalities and inequalities involving random variables are assumed to hold P-almost
surely without explicit notice.
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6.3.1 Consumer side

• As in deterministic case, N identical consumers who each

◦ plan over infinitely many future periods T = {0, 1, 2, . . .}

◦ consume ct and invest st in period t

◦ supply ht units of labor in period t, now determined endogenously

◦ capital earns return Rt, labor the wage wt in t

• Decision problem exactly as in Section 6.1

• As consumers are identical, so are the decisions they take!

• At the aggregate level, factor supply in period t ≥ 0 given by

Lt = Nht (114)

Kt = Nst−1 (115)

and capital per capita kt := Kt/N evolves as

kt = st−1, t ≥ 1. (116)
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• Optimal decision satisfies the conditions:

ct + kt+1 = wtht +Rtkt (117a)

−
∂hu(ct, ht)

∂cu(ct, ht)
= wt (117b)

Et

[

Rt+1
β∂cu(ct+1, ht+1)

∂cu(ct, ht)

]

= 1 (117c)

and the stochastic transversality condition (STVC)

lim
T→∞

E0

[

kT+1

T∏

t=0

R−1
t

]

= 0. (118)
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6.3.2 Production side

• Suppose that (net) production in period t is subject to multiplicative shock θt ∈ Θ ⊂ R++

such that total output (including non-depreciated capital) is given by:

Yt = eθtF (Kt, Lt) + (1− δ)Kt = N
[
eθthtf(kt/ht) + (1− δ)kt

]
(119)

• Continue to assume linear homogeneity of F and impose Assumption 1.3 on f .

• Using (114) and (115) and linear homogeneity, per capita output yt := Yt/N given by

yt = eθtF (kt, ht) + (1− δ)kt = eθthtf(kt/ht) + (1− δ)kt (120)

• Production shocks (θt)t≥0 follow an AR(1)-process of the form

θt = ρθt−1 + εt (121)

where 0 ≤ ρ < 1 and (εt)t≥0 consist of i.i.d. random variables with distribution µε

• Thus, we can chose the underlying probability space (Ω,F ,P) and construct transition
probability Q induced by (121) exactly as outlined in Section 3.2.2
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• In each period t, the firm takes the current shock in period t as given and decides on
demand for capital and labor.

• The fist order conditions then determine equilibrium factor prices as:

wt = W(kt, ht, θt) := eθt∂hF (kt, ht) (122a)

= eθt [f(kt/ht)− kt/htf
′(kt/ht)]

Rt = R(kt, ht, θt) := eθt∂kF (kt, ht) + (1− δ) (122b)

= eθtf ′(kt/ht) + 1− δ

• Remark:

◦ in the deterministic case, non-depreciated capital was included in F resp. f which
had the interpretation of a gross production function

◦ here, we interpret F resp. f as a net production function and must, therefore, ex-
plicitly keep track of non-depreciated capital

◦ the reason is that only net production output is affected by the shock.
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6.4 Equilibrium

• Economy is summarized by the list ERBC = 〈u, β,N, f, Q〉 plus initial conditions k0 > 0
and θ0 ∈ Θ

Definition 6.1 Given k0 > 0 and θ0 ∈ Θ, an equilibrium of ERBC is an allocation (cet , h
e
t , k

e
t+1)t≥0

and a price sequence (we
t , R

e
t )t≥0 which satisfy (117) and (122) for all t ≥ 0 and (118).

• Can again use an equivalent planning problem to determine the (unique) equilibrium
allocation

• Equilibrium prices then follow directly from (122) for all t ≥ 0.
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6.5 A stochastic planning problem

• Consider a benevolent social planner who maximizes consumer utility by choosing a fea-
sible allocation.

Definition 6.2 Given k0 > 0 and θ0 ∈ Θ, a feasible allocation is an adapted stochastic
process (ct, ht, kt+1)t≥0 which satisfies ct ≥ 0, 0 ≤ ht ≤ 1, kt+1 ≥ 0 for all t ≥ 0 as well as
the resource constraint

kt+1 + ct ≤ eθtF (kt, ht) + (1− δ)kt. (123)

The set of feasible allocations is denoted A(k0, θ0).

• The planning problem reads:

max
(ct,ht,kt+1)t∈T

{

U((ct, ht)t∈T)
∣
∣
∣ (ct, ht, kt+1)t∈T ∈ A(k0, θ0)

}

(124)

• As in the deterministic case, can compute the equations that characterize the solution to
(124)

• Can show that these coincide with the equilibrium equations derived above.

• Thus, the solution to (68) also constitutes an equilibrium allocation!
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6.6 Solving the stochastic planning problem by recursive methods

6.6.1 The Bellman equation

• Motivation for the following approach is analogous to the deterministic case

• Basic idea: Exploit the recursive structure of SPP

• Assume that f satisfies Assumption 1.3 and u Assumption 6.1 and 0 < β < 1

• For brevity, set

M(k, h, θ) := eθF (k, h) + (1− δ)k (125)

• In the present stochastic setup, the Bellmann equation reads:

V (k, θ) = max
k+≥0,0≤h≤1

{

u(M(k, h, θ)− k+, h) + β

∫

Θ

V (k+, θ+)Q(θ, dθ+) | k+ ≤M(k, h, θ)
}

(126)
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6.6.2 Policy function

• Having computed the value function V , suppose the maximizing solution (k∗+, h
∗) in (126)

is well-defined and unique for each (k, θ) ∈ R++ ×Θ

• Define the policy function g = (gk, gh) : R++ ×Θ −→ R+ × [0, 1]

g(k, θ) = arg max
k+≥0,0≤h≤1

{

u(M(k, h, θ)− k+, h) + β

∫

Θ

V (k+, θ+)Q(θ, dθ+) | k+ ≤M(k, h, θ)
}

Lemma 6.1 Let V be the unique solution to (126) and g = (gk, gh) be defined as above. Then,
for each (k0, z0) the sequence {c⋆t , h

⋆
t , k

⋆
t+1}t≥0 defined recursively as k⋆0 = k0,

k⋆t+1 = gk(k
⋆
t , θt)

h⋆t = gh(k
⋆
t , θt)

c⋆t = M(k⋆t , h
⋆
t , θt)− k⋆t+1

for all t ≥ 0 is a solution to (124).
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6.7 Equilibrium dynamics in the RBC model

• Consequences of previous results:

◦ dynamics completely described by the endogenous state variable {k⋆t }t≥0 and the
exogenous process {θt}t≥0

◦ analogously to stochastic OLG model, can analyze dynamics, existence of invariant
distributions, etc.

◦ in general, mapping gk(·; θ) has a unique steady state k̄θ for all θ ∈ Θ
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