

Al-supported Study Planning and Cohort Monitoring A perspective on Learning Analytics and Collaboration

René Röpke

Al-supported study planning and cohort monitoring

The Project: AlStudyBuddy

The (large) project team

RWTH Aachen University:

- Prof. Dr.-Ing. Ulrik Schroeder, René Röpke, Sergej Görzen, Sven Judel and Tobias Johnen
 - Competencies: Learning Analytics and Application Development
- Prof. Dr. Gerhard Lakemeyer and Hayyan Helal
 - Competencies: Rule-based AI and Planning
- Prof. Dr. Wil van der Aalst, Miriam Wagner und Pouya Soudmand
 - Competencies: Process Mining and Data Science
- Dr. Malte Persike and Kevin Esser
 - Competencies: Project management

University Wuppertal (BUW):

- Prof. Dr. Kerstin Schneider, Dr. Monika Piegeler, Leandro Henao, Luis Rumert
 - Competencies: Economics of Education
- Dr. Simon Görtz, Joel Fuchs and Karin Brieger
 - Competencies: Data Clearing and Project management

Ruhr University Bochum (RUB):

- Prof. Dr. Maren Scheffel, Rike Carpentier and Johannes Wagner-Schiermeister
 - Competencies: Educational Data Science and Didactics
- Prof. Dr. Sebastian Weydner-Volkmann and Dominik Bär;
 - Competencies: Ethics
- Dr. Peter Salden, Jonas Leschke and Katharina Batz
 - Competencies: Project management

Study planning – Definition

- What is a study plan?
 - Depiction of planned modules in study program
 - Contains information about workload, credits, whether modules are mandatory or electives
- Supports students in planning their studies
 - How is the study program structured?
 - ▶ When to take which module?
 - ▶ How much work is a specific module?
 - What is mandatory? What choices do students have?
 - Which dependencies are to consider between modules?
- Planning on the Macro level
 - Alternatively: Timetable planning, exam planning (Micro)

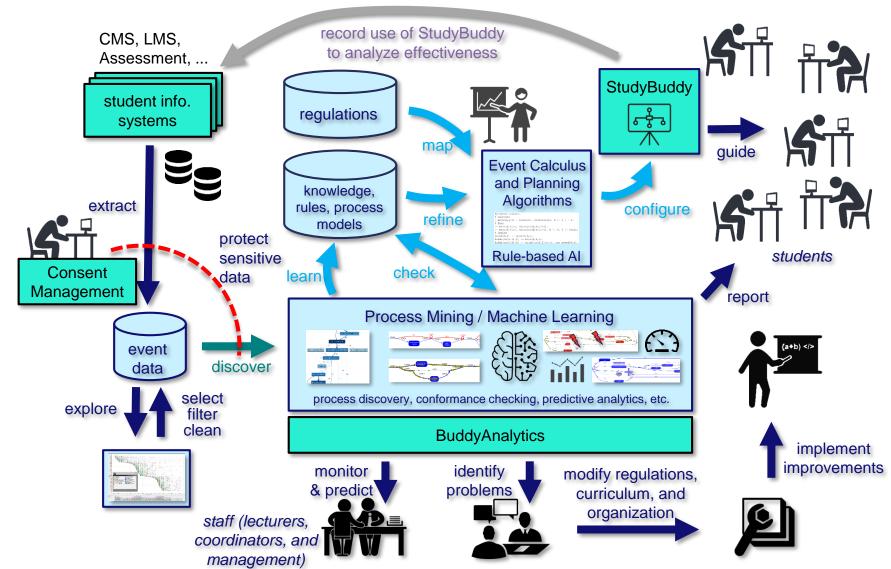
Example plans

Bachelor Mechanical Engineering (RUB)

				_			_	-		-	
Modul	Modulbezeichnung	sws	LP	1. Sem V Ü	2. Sem V Ü	3. Sem V Ü	4. Sem V Ü	5. Sem V Ü	6. Sem V Ü	7. Sem V Ü	
	Mathematisch/Naturwissenschaftliche Grundlagen										
1	Höhere Mathematik A	6	8	4 2							
2	Höhere Mathematik B	6	8	1	4 2						
3	Höhere Mathematik C	4	5	1		2 2					
4	Numerische Mathematik	4	5	1		2 2					
5	Naturwissenschaftliche Grundlagen (Physik, Chemie)	4	5	2 2							
		24	31								
	Ingenieurwissenschaftliche Grundlagen										
6	Maschinenbau in der Praxis (Ringvorlesung)	4	2	2 0	2 0						
7	Mechanik A	7	9	3 4							
8	Mechanik B	6	8	1	3 3						
9	Mechanik C	4	5	1		2 2					
10	Werkstoffe - Grundlagen und Anwendungen mit Praktikum	8	8	3 1	3 1						
11	Konstruktionstechnik A	4	5	2 2							
12	Konstruktionstechnik B	4	5	1	2 2						
13	Konstruktionstechnik C	4	5	1		2 2					
14	Fertigungsverfahren	4	5	1	2 2						
15	Grundlagen der Thermodynamik	4	5	1		2 2					
16	Grundlagen der Informatik und Programmierung	8	10			2 2	2 2				
17	Grundlagen der Strömungsmechanik	4	5				2 2				
18	Elektrotechnik	6	7				4 2				
19	Grundlagen der Regelungstechnik	4	5				2 2				
20	Grundlagen der Messtechnik mit Praktikum	4	5	l			1 3				
21	Wärme- und Stoffübertragung	4	5	l				2 2			
		79	94								
	Ingenieurwissenschaftliche Anwendungen										
	Schwerpunktmodule im Umfang von mindestens 35										
22	Leistungspunkten. Die Wahl muss aus den	28	35	I	1	I	l		0		

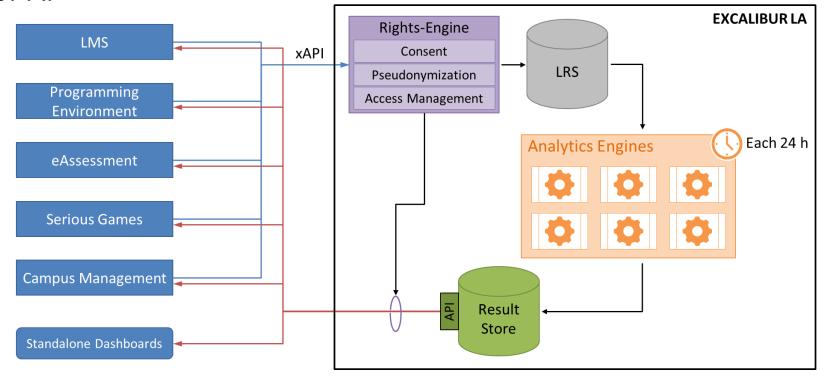
Bachelor Computer Science (BUW)

Semester						
1	Grundlagen aus der Informatik und Programmierung	Elektrotechnische Grundlagen der Informatik	Mathematik A	Anwendugsfach 1		
2	Algorithmen und Datenstrukturen	Grundzüge der technischen Informatik	Mathematik B	Mathematik für Informatik I		
3	Objektorientierte Programmierung	Betriebsysteme	Einführung in Datenbanken	Mathematik für Informatik II	WP-Bereich Informatik 1	
4	Softwaretechnologie	Grundlagen der Rechnerarchitek- tur	Rechnernetze	Automaten, Sprachen und Berechenbarkeit	Seminar zur Infor- matik	
5	Praktikum zur Softwaretech- nologie	Grundlagen der IT-Sicherheit	Anwendungsfach 2	Anwendungsfach 3	WP-Bereich Informatik 2	
6	Abschlussprojekt Bachelor Informatik			Anwendungsfach 4	Professionalisierung	

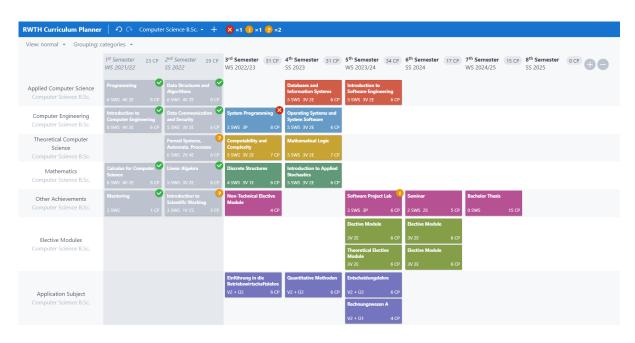

Bachelor Computer Science (RWTH)

Semester:	1. (WS)	С	2. (SS)	С	3. (WS)	С	4. (SS)	С	5. (WS)	С	6. (SS)	С	Summe Credits			
Praktische Informatik	Programmierung Teil 1 und 2 (V4+U2)	8	Datenstrukturen und Algorithmen (V4+Ü2)	8	Einführung in die Softwaretechnik (V3+Ü2)	6	Datenbanken und Informationssysteme (V3+Ü2)	6		_	>		28			
Technische Informatik	Technische Informatik (V4+Ü2)	6	Betriebssysteme und Systemsoftware (V3+Ü2)	6	Praktikum System- Programmierung (PSP) (P3)	8	→ PSP im 4. Se	em.	dann DatKom ODER DB	ins 6	i.(blaue Pfeile)		26			
Tooling in or make							Datenkommunikation und Sicherheit (V3+Ü2)	6		-	>		20			
Theoretische Informatik			Formale Systeme, Automaten, Prozesse (V3+Ü2)	6	Berechenbarkeit und Komplexität (V3+Ü2)	7	Mathematische Logik (V3+Ü2)	7					20			
Mathematik	Diskrete Strukturen (V3+Ü1)	6	Lineare Algebra für Informatiker (V3+Ü2)	6									26			
Watternauk	Analysis für Informatiker (V4+Ü2)	8					Einführung in die angewandte Stochastik (V3/Ū2)	6					20			
Sonstige Studienleistungen			Einführung in das wissenschaftliche Arbeiten (Proseminar) (V1+S2)	3	<			-	Software- Projektpraktikum (P3)	6	Bachelorarbeit und Kolloquium	15 34	34			
	Mentoring	1		7	Nicht-technisches Wahlfach	4			Seminar (S2)	5						
Wahlpflicht					₹ -	Ē		Ξ	Wahipflichtmodul (V3+Ü2)	6	Wahlpflichtmodul (V3+Ü2)	6	24			
Tampinon.									Wahlpflicht Theorie (V3+Ü2)	6	Wahlpflichtmodul (V3+Ü2)	6				
Summe Credits (ohne Anwendungsfach, ohne Verschiebungen im Studienplan)		29		29		25	2	25		23		27	158			

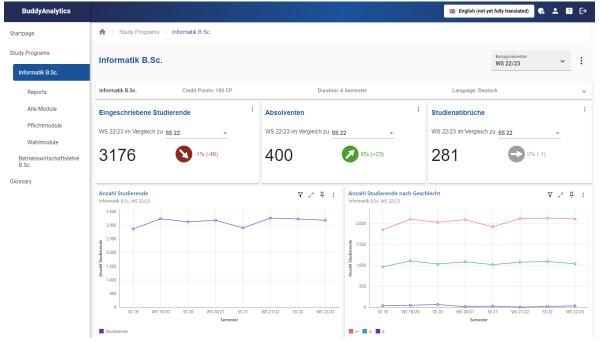
Approach


© Wil van der Aalst, AlStudyBuddy Project

Under the hood: EXCALIBUR LA

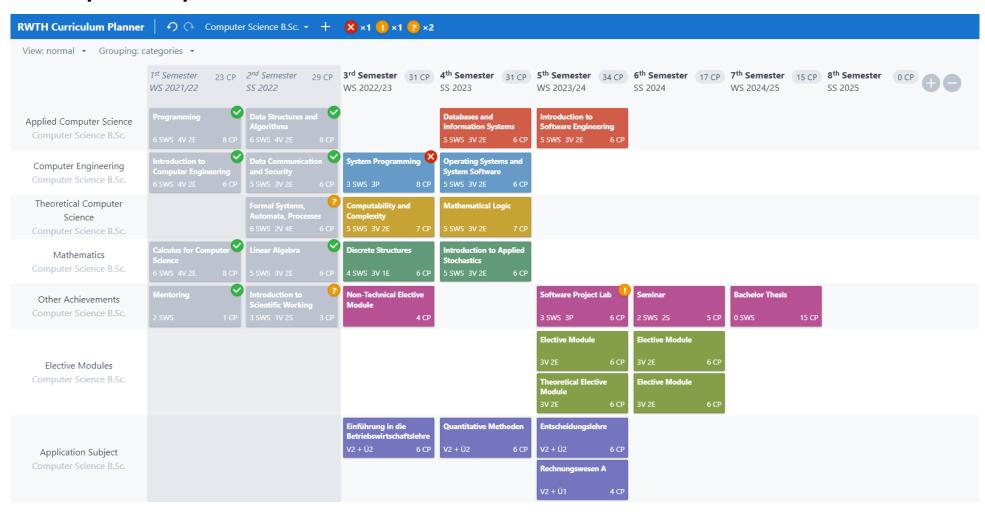


- Extendable and Scalable Infrastructure build for Learning Analytics
- Will be extended:
 - Process Mining-based Engines
 - Rule recommendations for AI



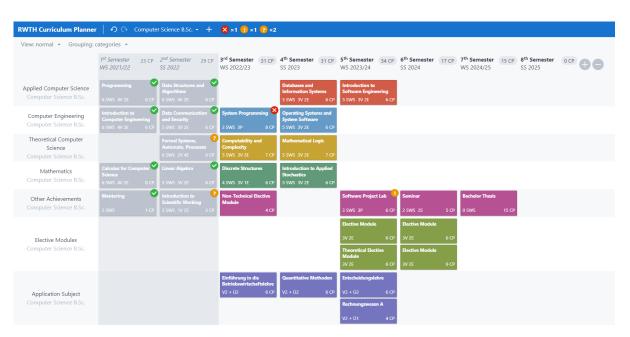
- StudyBuddy
 - Planning applicationg for students

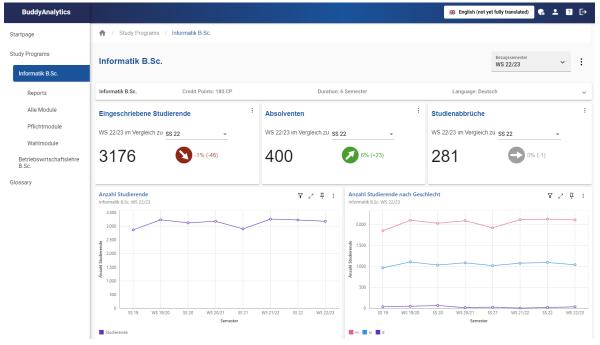
- BuddyAnalytics
 - Monitoring applications for study program designers


© AlStudyBuddy

© AlStudyBuddy

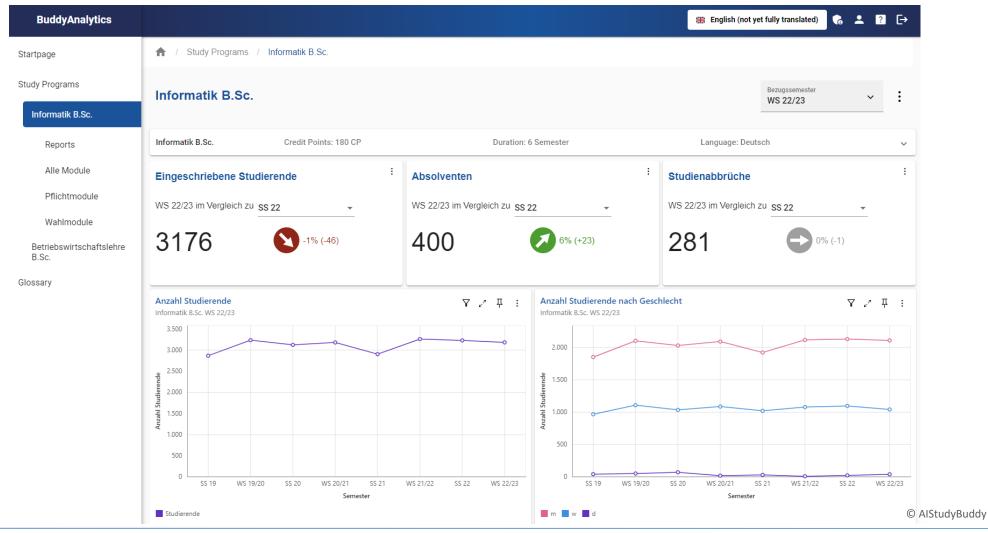
StudyBuddy





- StudyBuddy
 - Planning applicationg for students

- BuddyAnalytics
 - Monitoring applications for study program designers


© AIStudyBuddy

© AlStudyBuddy

BuddyAnalytics

Beyond-the-project visions

Informed, reflected planning of individual study paths

- Guidance towards study sucess considering individual circumstances
- Cross-institutional analysis and evaluation learning from each other and sharing experiences

▶ Unleashing the potential of existing data – to understand how students plan and behave

The Project: **AMIGO**

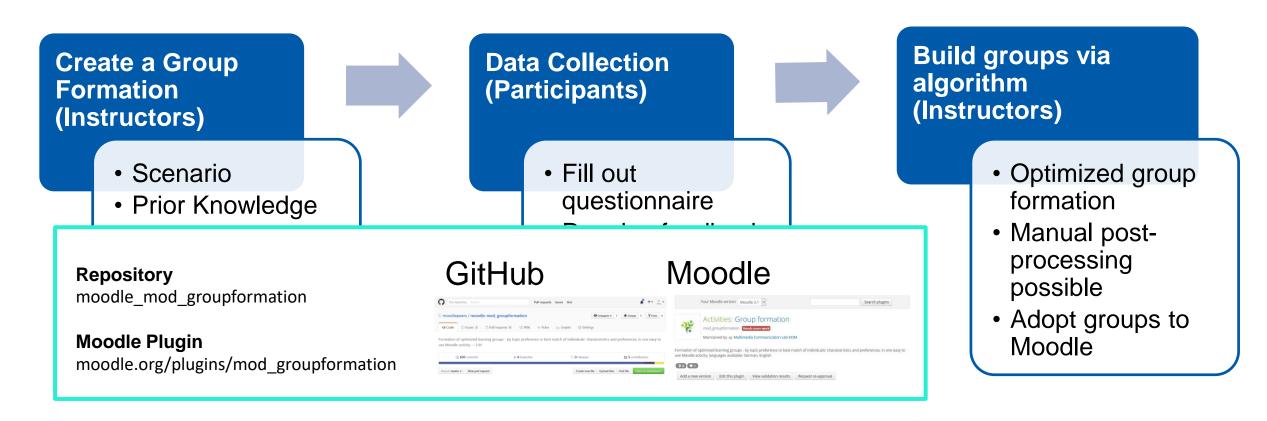
The project team

- René Röpke
- Prof. Dr.-Ing. Ulrik Schroeder

Johannes Gutenberg University Mainz:

Dr. Henrik Bellhäuser

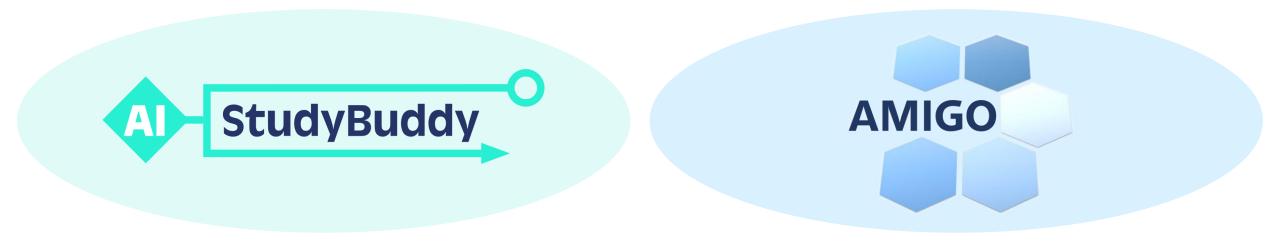
Associated Partners


- Prof. Sonia Lippke, Prof. Peter Baumann, Dr. Stanislav Chankov
 - Instructors at Jacobs University Bremen
- Prof. Dr.-Ing. Johannes Konert
 - Original partner from MoodlePeers project

Learning Group Formation: Who learns well with whom?

- Interdisciplinary Project (MoodlePeers since 2014, AMIGO since 2019)
 - Computer Science & Educational Psychology
 - Testbeds in Darmstadt, Mainz, Aachen, Bremen

Algorithmic Method for Improved Group Formation Online


- Various user studies in different courses and universities
 - Acceptance study using a cross-sectional questionnaire
 - Most named problem: "Our group was not a good fit in terms of members"
 - Acceptance: 70% would participate in algorithm. group formation (positive, curious attitude)
 - Decision study using a quasi-experimental design
 - Who chooses algorithmic vs. manual group formation ("friend groups")?
 - \rightarrow 1/3 chose algorithm
 - → Mainly "disadvanted" students (significantly older, poorer school grades, less conscientiousness)
 - Intervention studies to identify which traits influence group performance, satisfaction, time spent etc.

WORK IN PROGRESS

A perspective on collaboration

Identifying connections

Matching groups and course choices

Detecting collaboration across the students' lifecycles

Issues with missing collaboration data

Matching groups and course choices

Two perspectives

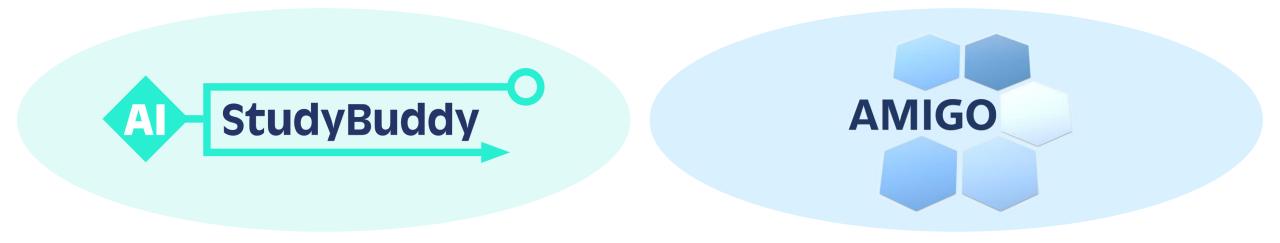
Finding groups in similar courses

- Shared interest, similar schedules
- Consideration during group formation
 - → Currently selected courses as constraints
 - → Inclusion of past courses and students' competencies

Finding courses in similar groups

- Shared interests, shared positive experiences in collaborating
- Consideration during study planning
 - → Collaborative Views/Plan sharing
 - → Individual constraints vs. group constraints

Detecting collaboration across the students' lifecycles


Cohort monitoring and learning analytics on different levels

Macro level "Study program"

Micro level "Course"

- Idea: Linking both levels
 - Compare students' performance based on collaboration history/experiences
 - ▶ Identification of shared paths before and after collaboration
 - Analysis of collaboration effects of early semesters
 - Detect patterns of collaborating link them to performance data
- But: Longitudinal research with high complexity and issues of data privacy

Conclusion

- Learning Analytics with a focus on study planning and cohort monitoring
 - Macro vs. Micro level
- Group Formation and Collaborations throughout studies could be investigated
- Complex research which requires longitudinal studies, lots of data, brings issues of data privacy and anonymity

Thank you for your attention!

