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Abstract

Background: Human cases of plague (Yersinia pestis) infection originate, ultimately, in the bacterium’s wildlife host
populations. The epidemiological dynamics of the wildlife reservoir therefore determine the abundance,
distribution and evolution of the pathogen, which in turn shape the frequency, distribution and virulence of
human cases. Earlier studies have shown clear evidence of climatic forcing on contemporary plague abundance in
rodents and humans.

Results: We find that high-resolution palaeoclimatic indices correlate with plague prevalence and population
density in a major plague host species, the great gerbil (Rhombomys opimus), over 1949-1995. Climate-driven
models trained on these data predict independent data on human plague cases in early 20th-century Kazakhstan
from 1904-1948, suggesting a consistent impact of climate on large-scale wildlife reservoir dynamics influencing
human epidemics. Extending the models further back in time, we also find correspondence between their
predictions and qualitative records of plague epidemics over the past 1500 years.

Conclusions: Central Asian climate fluctuations appear to have had significant influences on regional human
plague frequency in the first part of the 20th century, and probably over the past 1500 years. This first attempt at
ecoepidemiological reconstruction of historical disease activity may shed some light on how long-term plague
epidemiology interacts with human activity. As plague activity in Central Asia seems to have followed climate
fluctuations over the past centuries, we may expect global warming to have an impact upon future plague
epidemiology, probably sustaining or increasing plague activity in the region, at least in the rodent reservoirs, in
the coming decades.
See commentary: http://www.biomedcentral.com/1741-7007/8/108

Background
Plague (Yersinia pestis infection) is among the most
feared of diseases [1]. As a zoonotic disease, environ-
mental factors shape plague epidemiology through
effects on the main rodent hosts, the flea vectors, the
bacterium itself and secondary hosts (other small mam-
mals, domestic animals, and humans) and alternative
vectors (lice and other flea species). On short time
scales, plague activity in the established foci is mainly
determined by the abundance of rodent hosts and

vectors, but bacterial evolution can be rapid and
respond to changes in host availability and susceptibility
as well as transmission rate and even seasonality [2-4].
Despite being a far less prolific killer than ever-present

diseases such as malaria, plague is believed to have
caused at least two pandemics with major demographic
impact. The first pandemic known to Western history,
‘the Justinian plague’, severely reduced the Mediterra-
nean European population between 540 and 750 AD,
decimating the capital Constantinople in 541-542 and
dashing the last attempt to reunite the Roman Empire
[5]. But from 800 at the latest, plague was seemingly
absent in Europe for over half a millennium until the
‘Black Death’, which most likely spread out from Central
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Asia (traditionally suspected to have spread into Europe
from the Black Sea port of Caffa, to which it had been
brought by raiders or merchants from Central Asia [6])
and reduced the European population by about 40-60%
after 1346 AD [7,8]. As in Justinian’s time, it seemed to
persist locally in Europe over the next few centuries
before again fading away, first from rural areas, but per-
sisting in some places into the early 19th century [1].
Even when absent from most records, Y. pestis was

always present in its original habitats, and a so-called
‘Third Pandemic’ emerged from the Yunnan province of
China in the early 1800 s. Although not causing devasta-
tion on the scales of ‘Justinian’s Plague’ or the ‘Black
Death’, some strains of Y. pestis have spread and per-
sisted in rodent reservoirs from the western United
States and India to Africa (in particular Madagascar) [9].
While the geographical origin of Justinian’s Plague is

unknown, the Black Death and Third Pandemic both
probably emerged from the interior of Central Asia,
where the plague bacterium seems likely to have evolved
after diverging from its most recent extant relative,
Y. pseudotuberculosis, and is also still endemic in large
areas [5,8-11]. Between epidemics, human plague occurs
almost exclusively as a result of contact with the wildlife
reservoir, but human-to-human transmission (through
lice vectors or droplets) may allow an epidemic to flare
up over much larger areas outside those of the natural
host ranges [7,12,13]. Primary human infections occur
mostly through the bites of fleas that have fed on an
infected animal (rodent or secondary host) or from eat-
ing or processing an infected animal.
Here we examine data from the Pre-Balkhash plague

focus of southeastern Kazakhstan (Figure 1a), where the
population densities of great gerbils (Rhombomys opi-
mus), a major reservoir host species [10,14], their fleas
and the presence of plague were continuously monitored
from 1949-1995 [15,16]. The gerbil population densities
vary considerably through multiannual fluctuations but
are highly spatially correlated on large scales, at least up
to the distances of more than 200 km covered by our
field data. Their spatial distribution appears to be lim-
ited by soils suitable for burrowing, while their temporal
density fluctuations are mainly influenced by an inter-
play between density dependence (which operates
around the burrow systems as they disperse mostly at
the local scale, i.e., <15 km per generation), and variabil-
ity in vegetation cover (which is synchronous over larger
distances due to spatially autocorrelated precipitation
and temperature) [15,16]. The main sylvatic (i.e., wild-
life) plague transmission vectors are fleas [17,18], and
increasing vector abundance is probably one of the rea-
sons why moist, relatively warm spring conditions tend
to increase the prevalence of plague in great gerbils
[12,16,19]. Great gerbils usually have few visible

symptoms of plague infection, and only moderate
increases in mortality [12,20], and there seems to be a
critical threshold of host population density necessary
for plague to persist in an area [10,12,21].
The region is fairly typical of Central Asia in having a

highly continental, and mostly arid climate, with some
moister and more productive areas near rivers and
along the Himalayan foothills. Climatic variation may
impact plague dynamics directly through host density
fluctuations caused by variable food abundance and sur-
vival rates, through vector (flea) population growth and
survival, through temperature effects on the bacterium
itself and, most important, through the interaction of
several factors. For instance, increased humidity would
tend to increase host population growth (through food
abundance) and flea population growth (through favor-
ing survival of subadult stages as well as host densities)
at the same time [7,16,19,22,23].
Thus, fluctuating weather conditions have been sug-

gested to affect the dynamics of plague within its reser-
voirs and, through this, the number of human
infections, while some little-known factors seem likely
to limit the distribution of plague between large epi-
demics [15,16,19]. Here we pursue the link between cli-
mate and plague by using a set of recently published
palaeoclimatic reconstructions that are the longest and
most thoroughly verified high-resolution records avail-
able for Central Asia: two accumulation series from the
Guliya ice core (G), signaling large-scale, low-frequency
precipitation changes [24-26]; a stalagmite record from
Wanxiang Cave, China (S), providing information on
the strength of the east Asian monsoon and, conversely,
the Siberian winter monsoon [27]; and a composite den-
drochronological reconstruction from the Tien Shan
and Karakorum Mountains (T) capturing summer tem-
perature (and to some extent rainfall variability) [28,29].
For details, see Figure 1b, the Methods section and the
supporting information (Additional file 1).
If the climate reconstructions capture variability rele-

vant for the plague system, we should hypothesize that
(1) the monitoring data will show evidence of climate
forcing on sylvatic plague prevalence, and (2) this will
be reflected in a further, independent data set on
human cases of plague, collected by the Kazakh health
department from 1904-1995. Most of these cases
occurred prior to 1949, when plague monitoring and
control began as part of Soviet-wide efforts, and antibio-
tics and insecticides became increasingly available
[18,30]. Thus, a consistent and important climate for-
cing on sylvatic plague should be detectable in a statisti-
cal connection between climate and the independent
human case data, allowing us to look for associations
between climate fluctuations and human plague on
scales much larger than previously considered, as well as

Kausrud et al. BMC Biology 2010, 8:112
http://www.biomedcentral.com/1741-7007/8/112

Page 2 of 14



connecting these associations with the long-term, large-
scale behavior of the plague system.

Results
We find that for the period 1982-1998 (1991 for the ice
cores), all climate indices have significantly nonzero
average correlations with annual variations in primary
production (measured as the Normalized Differentiated
Vegetation Index, NDVI) over Central and East Asia
(Figures 1c, 1d and 2a). Also, a significant relationship is
found between annual variation in NDVI (using the
most variable half of the pixels to rule out invariably
green or dry broadleaf and desert pixels) and sylvatic
plague abundance, P, in the same year (median pixel-
wise r = 0.41, probability of mean r being zero <0.01)
and also in the next year (median r = 0.50, P < 0.01)
(Figure 2b). P is measured as the estimated annual pro-
duct of gerbil density (animals per hectare) and the pro-
portion of gerbils with active Y. pestis infection in the

Pre-Balkhash 1949-1995 (see Methods). Associations
with plague (P) are also found for the same-year tree-
ring temperature index T (median r = 0.41, P < 0.01)
and monsoon strength S (median r = -0.33, P < 0.01),
and for the glaciological accumulation series (G) with a
time lag of 1 yr (median r = 0.35, P < 0.01). Moreover,
it is largely the same NDVI pixels that correlate with
the climate indices as with plague (absolute pixel-by-
pixel correlations between Pt and NDVI give r = 0.74,
P < 0.01 for both Tt and St, and r = 0.66, P < 0.01 for
Gt-1) (see Additional file 1 for maps). Thus, NDVI, pla-
gue prevalence in gerbils and the palaeoclimatic indices
seem consistently interrelated (cross-correlated) for the
available overlapping periods. As vegetation abundance
is of direct importance as rodent food supply, and
responds to moisture and temperature, which are also
directly important for the fleas, bacteria and rodents,
these associations suggests that the palaeoclimatic series
reflect large-scale fluctuations in factors relevant for

Figure 1 Map and climate data. (a) Map showing the PreBalkhash plague focus (1) and other locations mentioned in the text: the Almaty
hospital (2); Lake Issyk-Kul (3); the city of Constantinople (4); the city of Caffa (5); the Yunnan province (6); the areas containing the
dendrochronological sites (T) (7); the Guliya glacier (G) (8); and Wanxiang Cave (S) (9). (b) The climate proxy time series. For T and S the green
and black lines respectively represent 10-year moving averages, for G the red line is the decadal reconstruction, while the blue line is the annual
series (c) Average (Mar-Oct) NDVI for East Asia. Black contour lines correspond to interannual variability as shown in (d), which represent the
standard deviation of the annual mean for each pixel. We see that the most green (coastline broadleaf) and most dry (arid grass/shrubland)
regions tend to have the least annual variability. Black contours indicate the mean.
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both the flea vectors and the rodent hosts of plague
[12,15]. See Methods and Additional file 1 for further
information.
We therefore turn to links between climate, sylvatic

plague activity and the independent data on human pla-
gue cases (Figures 2c, 2d and 3), initially for the period
1949-1995. The climate series show cross correlations
with P (see Additional file 1), and of these, the tree-ring
series (T) provides the highest correlation with plague
prevalence (r = 0.45 at lag 0) as with NDVI, while the
correlation with S is negative (r = -0.42 at lag 0). Low-
frequency variations and delayed effects from climate
are to be expected [15,19,21,31]. Hence, the number of

plausible measures of climate exceeds what can reliably
be corrected for, with regard to effects of multiple test-
ing, without reducing the P value for acceptance below
what is possible to achieve when temporal autocorrela-
tion needs to be taken into account. Thus, instead of
selecting one single “best” model, we fitted 104 variants
of a statistical model with P as the response variable
(see Methods, Figures 3c and 3d and Additional file 1),
incorporating different measures derived from all three
climatic indices (see Methods and Additional file 1).
Each model’s suitability for explaining observed sylvatic
plague activity (P) from 1949-1995 was measured by
its generalized cross-validation (GCV) score [32].

Figure 2 Relations between climate and plague. (a) Empirical distributions of the pixel-wise correlations between annual NDVI and the
climate proxies. Only glacial accumulation is centered around zero for time lag 0, as accumulation rate the previous winter seems to be the
relevant factor, while for T and S temporal autocorrelation gives both t = 0 and t = -1 significant relationships with NDVI. (b) Empirical
distributions of the pixel-wise correlations between annual NDVI and sylvatic plague in the present (t = 0) and following (t = +1) year, both for
observed (P) and estimated (Y) values. As for climate, plague seems non-randomly related to NDVI, both in the current and the preceding year.
(c) GCV values for all 104 sylvatic plague models (eq. 8) vs. their correlation with human plague cases 1904-1948 (D). The 5% lowest-GCV models
that form the estimate of climatically-forced sylvatic plague (Y) are highlighted in red. The blue dots show the mean D for each increment of
GCV, connected with a (blue) trend line showing their close correlation (r = -0.99). (d) The empirical density distributions of D for the 5% (i.e.,
500) best sylvatic plague models shown in red. They are very unlikely to be centered on zero, suggesting a nonrandom relationship between a
climate-driven model’s ability to predict sylvatic and human plague.
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A substantial proportion of the large-scale sylvatic pla-
gue activity from 1949-1995 seems to be explicable
through climatic factors, on average explaining 61% of
the deviance, with the 5% models with lowest GCV
explaining about 90%. This supports our first hypothesis.
Also, the GCV scores are approximately normally dis-
tributed around a modal value of 22. However, a distinct
“tail” of low GCV values strongly suggests that there
exists a family of better-than-random models (Figure 3a;
see also Methods and Additional file 1).
Moreover, as the climate proxies extend back in time,

we compute the correlation, D, between a model’s pre-
dicted sylvatic plague activity and the observed human

plague cases 1904-1948, that is, before the sylvatic pla-
gue monitoring started. There is a clear correlation
between D and a model’s adequacy for explaining sylva-
tic plague (GCV) (r = -0.56, n = 104, P < 0.001; Figure
3c). The n refers to the number of different ways of
smoothing and lagging the climate data (see Supplemen-
tary information for further background). It suggests
that models that are better at accounting for sylvatic
plague activity 1949-1995 tend also to generate the bet-
ter correlations between the sylvatic plague activity they
predict and the human plague activity observed 1904-
1948. Taking the mean correlation with human plague
(D) per incremental increase in GCV underlines this,

Figure 3 Model results. (a) The empirical distribution of GCV scores for the 104 climate-driven sylvatic plague models, the best 500 of which
are marked in red. (b) The effect of increasing the number of models included in the sylvatic plague index Y on its correlation (D) with human
plague 1904-1948. D is not sensitive to how many models are included, as long as the best 500 are. (c) The (loge) time series of sylvatic plague
abundance (P, black; broken when no plague observed, i.e., P = 0, despite continued sampling of hosts), and the estimated plague abundance
(Y, red line). The recorded human plague cases (blue bars) and the predicted human plague from Y (eq. 10, broken red-yellow line) are shown
on a linear scale. (d) The black line shows estimated climate forcing on plague (Y) over the past 1500 years, with 95% quantiles in gray and
multi-frequency (2-60 years) Gaussian moving average (red). The blue lines mark the long-term (2-400 years) multifrequency mean, maximum
(upper broken line), minimum (lower broken line) and sum of minimum and maximum (solid line). The periods leading up to the Justinian
plague (1), Black Death (2), Pandemic (3) and the Manchurian epidemics (4) are shaded in blue. The index (W) of conflict between Chinese and
nomad societies is shown above the extent of the tree-ring index (T, green), the glacial series (Gann and Gdec, blue), and the decadal coverage in
the monsoon proxy (S, brown).
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showing a very high correlation between GCV and mean
D (r = -0.99, n = 27, P < 0.001) (Figure 3c).
Focusing on the 500 models with the lowest GCV

(best 5%), we find from the distribution of their D
values that their predicted sylvatic plague activities con-
sistently tend to correlate with human plague 1904-1948
(median r = 0.56, one-sample t-test n = 500, P < 0.001;
Figure 3d). The temporal mean of these 500 predictions
forms our ‘best estimate’ of climate forcing (Y) on sylva-
tic plague activity. It correlates closely with the number
of human cases 1904-1948 in the same (r = 0.57) and in
the following (r = 0.60) year, and this is not sensitive to
the exact number of model variants included in Y
(Figures 4a, b and 4c), as the poor (high GCV) sylvatic
models cancel out, leaving the signal from the good
(low GCV) ones dominant. Finally, taking temporal
autocorrelations into account in a generalized additive
mixed model (Methods and Additional file 1), we find
that the sylvatic plague index, Y, is a significant predic-
tor (P < 0.01) for human plague cases from 1904-1948,
as well as for the whole period from 1904-1991 when
taking the existence of the antiplague control program
from 1949 into account as a bivariate factor (Figure 3c).
As these human cases were recorded before the moni-
toring program started, they cannot have influenced the
expectations or efforts of the people carrying out rodent
monitoring. Thus, all these analyses are strongly sugges-
tive of a consistent causal link between climate, sylvatic
plague and human plague, and hence are consistent

with our second hypothesis, that climate fluctuations
affect the plague reservoir in a way that is decisive for
the number of primary human infections.
Turning to much longer time scales, we first construct

a binary vector, with 0 meaning no known large plague
epidemic AD 450-2000, and 1 denoting suspected high
plague activity leading up to a pandemic, namely the
years 510-541 (prelude to the plague of Justinian), 1300-
1347 (before the Black Death), 1845-1885 (the start of
the Third Pandemic) and 1900-1920 (the Manchurian
epidemics), the periods shaded in Figure 3d. The models
whose predictions correlate the most with human pla-
gue in Kazakhstan 1904-1948 (D) also tend to have the
highest correlations with this crude series of historical
plague (r = 0.8, n = 104, P < 0.01; see also Additional
file 1).
Prior to the 16th century, the ice-core accumulation

series (G) has only decadal resolution, and the monsoon
index (S) has frequent missing values, which need to be
estimated from its own decadal autocorrelation structure
and the correspondence with the decadal ice-core accu-
mulation (see Figure 3d and Methods). However, while
such model and sampling error from several sources
introduces large uncertainties, especially in the earlier
parts of the reconstructions, there is no reason to
believe that any of them introduces systematic bias.
Hence, as a best estimate, the centennial scale picture
emerging from the interplay between these climate fac-
tors is intriguing (Figure 3d). Despite the fact that the

Figure 4 Schematic overview. The flow of information goes from the raw climate data, interpolated where necessary to keep a consistently
annual scale over the whole period, to the models of sylvatic plague, and from there to their relationship with recorded human plague cases
1904 to 1949 and as a best estimate for plague activity over the last two millennia.
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absence of tree-ring data deflates variability prior to AD
686, it suggests that the first (Justinian) pandemic
started during a period of higher than median plague
activity in wild rodents. Plague activity then declined
slowly to below median, before rising in several smaller
peaks from the beginning of the 12th century lasting
until the onset of what became the Black Death around
AD 1340. Afterwards, predicted plague activity declined
to the lowest levels of the period and stayed well below
the median until the time when plague again became
evident in Chinese records and as the Third Pandemic
emerged sometime during the late 18th and mid 19th
centuries. During this period, about 2.5 million human
plague cases were recorded over 18 provinces in China
[33]. Furthermore, a short-lived peak coincides with the
unusually virulent outbreaks of primarily pneumonic
plague in Manchuria in 1910-1911 and 1920-1921 [34].

Discussion
The Pre-Balkhash gerbil data cover about 2% of Kazakh-
stan. That the early 20th century human plague cases
are nonetheless predicted so well on a larger (national)
scale is probably partly related to the synoptic nature of
the patterns involved. Indeed, climatic fluctuations syn-
chronize gerbil abundance over large areas, which may
itself be crucial to the spread of plague [15], as well as
making the impact on humans greater simply by gener-
ating larger areas with high infection risk. Moreover, the
relative explanatory power of a purely climate-driven
model, such as that derived here, is likely to increase
with the spatial scale over which it is applied, as the
endogenous dynamics in otherwise uncoupled popula-
tions would then cancel out, increasing the relative
strength of the larger-scale climate signal in the mean
density. Human population density patterns (which
reflect landscape productivity) also suggest that a large
proportion of cases should occur in the southeast part
of the country, in the region of the study site.
The impact of sylvatic plague on humans may operate

through several scales and mechanisms [10,16,20]. First,
it is obvious that more infected rodents and fleas are
likely, everything else being equal, to translate into a
greater number of humans coming into contact with the
bacterium. Further, the more primary human infections
there are, the more likely it is for an epidemic to start
and for a particularly virulent mutant to establish in
humans. However, everything may not be equal, as pla-
gue activity feeds back on itself through evolutionary
processes. This may impact the resulting epidemiology
when secondary hosts are infected and leads us to sus-
pect that epidemics in naïve hosts could be more viru-
lent when occurring after a prolonged period of high
plague activity, even though (or indeed because)
increased resistance in the primary hosts is also being

selected for. This might suggest why the current pan-
demic is less virulent than those of centuries past.
No quantitative records of plague prior to 1904 are

available for the region. But the 11th to 14th century
period of high plague activity predicted by our study site
coincides with plague outbreaks in Kaifeng and other
parts of China from circa 1320 to the 1350 s [35,36]
and notably with an outbreak near Lake Issyk-Kul
(about 200 km from Pre-Balkhash; Figure 1) in 1338-
1339 [37], the discovery of which suggested to archaeo-
logists that the Black Death pandemic originated in this
region [8].
The associations between the climatic indexes, pre-

dicted plague and NDVI suggest that periods of high
plague activity should have a degree of correlation with
increased precipitation and thus productivity in water-
limited grasslands, as also suggested by earlier studies in
Kazakhstan [16] and the USA [19]. Historical records
reflecting the relative strength of the Han Chinese states
versus neighboring pastoralist groups [38] are consistent
with periods of high productivity preceding the two
major plague epidemics (Figure 3d; see also Methods
and Additional file 1). Resource scarcity is often
assumed to be a primary driver of historical conflicts
[39], and poor grazing conditions during cold periods
probably forced Central Asian nomads south. However,
territorial expansions and (successful) warfare depend
not only on population size relative to its resources but
also on the absolute size of the population from which
armies can be recruited. We thus observe that the two
main periods of border expansion, migration and war-
fare by Central Asian nomad pastoralists [38] found in
Chinese records, and known in European history from
the Hun invasions of the 5th century and the Mongol
expansions of the 13th, are consistent with periods of
high productivity in Central Asian grasslands having
occurred prior to the great plague pandemics (Figure
3d). Also, Mongol expansions [35] might explain why
plague appeared in Kaifeng (then recently occupied by
Mongols) but not in Europe in the 1200 s, whereas dur-
ing the 1300 s, after the Mongol conquest of Eastern
Europe, plague appeared both in China and Europe [35].
Not much is known about the evolutionary rate of Y.

pestis virulence in its natural reservoirs. But on a theore-
tical basis, we may suspect that periods of high plague
activity (i.e., high host densities and transmission prob-
abilities) select for more virulent types, and periods of
low activity weed out strains killing the host too quickly
[3]. Thus, it might be noteworthy that the centennial
scale minima and maxima (i.e., averaging over moving
windows of from 2 to 400 years in length) suggest
essentially three periods of higher virulence having been
selected for, and that these periods are consistent with
the three large pandemic periods (Figure 3d). Moreover,
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depending on scale and the relative importance of viru-
lence ‘retreats’ (i.e., plague minima) versus ‘booms’ (i.e.,
maxima), the Third Pandemic started with a markedly
lower expected virulence than the other two and would
therefore perhaps not have spread so far out of its origi-
nal habitat had it not been for human activities. Inter-
estingly, the largely pneumonic and virulent Manchurian
epidemics of 1910-1911 and 1920-1921 [34] did appear
during a short peak of high expected virulence.
There are some peaks that do not correspond to

known plague events. These may point to weaknesses in
the data or model or to unrecorded events (both likely,
considering the paucity of data back in time), but it
should also be noted that high plague activity in the
reservoir is likely (as for other zoonoses) to be a neces-
sary but not sufficient condition for large human out-
breaks: plague in humans cannot be sustained without
plague activity in the reservoir, but we do not expect
every peak in rodents to generate a human epidemic.
Moreover, there is no instantaneous link between Eur-
ope (or China) and the part of Central Asia with which
our models are concerned. Thus, mechanisms for long-
distance transmission by human or nonhuman hosts are
also necessary, and our model of course cannot account
for the local dynamics of plague foci persisting in Eur-
ope after the first waves of infection by some (presum-
ably) virulent strain(s) of Y. pestis. However, as plague
evidently has not been able to persist indefinitely in Eur-
opean hosts, it is notable that plague died off in rural
Europe under periods of decreasing predicted plague
peaks and virulence in Central Asia, though several Eur-
opean cities continued to act as independent plague foci
for a considerable time, possibly due to the urban
rodent reservoirs [8]. Thus, the apparent patterns are
striking enough on several scales to suggest that the pla-
gue system has indeed been influenced by climate fluc-
tuations over the past 1500 years and that this has had
consequences for human history.
Even though the first, controversial isolates of Y. pestis

DNA in European plague victims appear to have been
satisfactorily replicated [1,40-45], there is ongoing
debate about whether Y. pestis was a major cause of Jus-
tinian’s plague and the Black Death [46]. Our findings
suggest a consistent impact of climate on modern pla-
gue, are consistent with Y. pestis being present in med-
ieval plague victims [40,44,45], and tentatively suggest
that changes in host densities would select for fluctua-
tions in pathogen virulence consistent with the historical
trends. However, we must also caution that our climate-
forcing models would arguably apply to other Central
Asian zoonoses that could potentially have emerged and
spread due to the same climate forcings.
Looking towards the future, plague is still a concern

because of its potentially disrupting effects on local

health systems and on international trade, and because
of the risk of epidemics that are difficult to control,
especially in dense human settlements with poor public
health provisions [7,34]. While Y. pestis is currently not
a major human pathogen, its status as a reemerging dis-
ease, combined with growing risks of antibiotic resis-
tance [47] and its potential use as a bioweapon [48],
makes plague a disease worth studying for its own sake.
In addition, its reputation has motivated surveillance
and research on scales that makes it a valuable model
system for understanding zoonotic diseases in the past,
present and future. The predicted regional climate
changes are highly uncertain, but we note that increas-
ing temperature (T) and monsoon (S) proxy evidences,
and lower than average glacial accumulation, are related
to higher plague estimates (Y). In other words, our
results suggest that when the gerbils’ dry habitats
experience higher than average rainfall and warm
springs, large plague outbreaks in gerbils, and high pla-
gue risk in humans, tend to follow. During the past dec-
ades, glacial accumulation (G) has been increasing and
monsoon strength (S) has been about average, but the
tree-ring temperature index, which is statistically the
most closely and positively related to plague dynamics,
has shown a rising trend which is expected to continue
[29], and glacial accumulation may also fall as tempera-
ture rises [25]. Hence, predicted continuation of global
warming associated with an increase of the hydrological
cycle may enhance the probability of human plague out-
breaks in Central Asia, especially if socioeconomic
instability undermines the efforts of plague prevention
in less developed though highly populated regions.
However, much work remains to be done. The epide-

miological dynamics of the nonhuman hosts and the
arthropod vectors are incompletely known, as are the
differences between bacterial strains. The most common
vectors have been studied in detail, but the sylvatic pat-
terns are sometimes puzzling, suggesting some unknown
mode of long-range dispersal or an unrecognized mode
of persistence in the environment. Interactions with the
habitat structure of the rodent host community may
reflect some of the mechanisms through which climate,
topography and vegetation (it is hard to avoid the
impression that forest belts seem to act as boundaries)
seem to form a barrier to plague occurrence, a barrier
that seems to break down under some circumstances to
allow the large-scale epidemics of history.

Conclusions
The importance of climatic fluctuations in shaping
human history is generally recognized [49], but such
hypotheses are rarely evaluated statistically. Here, we
assess the correspondence between multiple chains of
evidence suggesting that large-scale climate fluctuations
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have important influences on the epidemiology of a
reemerging disease of historical importance.
We do not imagine that our findings represent final,

conclusive evidence that the historical pandemics known
as the plague of Justinian and the Black Death were
caused by the plague bacterium (Yersinia pestis), let
alone that climate fluctuations were instrumental in the
origin of these pandemics. But we do argue that climate
fluctuations have important effects on modern plague
epidemiology and that these effects are strong enough
to be visible as consistent and nonrandom relationships
between palaeoclimatic (proxy) data, remote-sensed
variability in plant cover (NDVI), plague prevalence in
an important wildlife host species (great gerbils), and
human plague prevalence (number of reported cases) in
the half-century prior to commencement of consistent
public health efforts in the region.
This, we believe, shows that large-scale climate fluc-

tuations have had, and likely will have, important conse-
quences for wildlife plague prevalence and human
health in vulnerable areas. Moreover, the correspon-
dence between our climate-driven models of reservoir
plague prevalence and historical trends in human plague
occurrence are consistent with the view that large-scale
plague epidemiology is linked to outbreak frequency and
virulence in the core plague habitats of Eurasia, and that
these habitats are affected by climate fluctuations. Such
a view by no means suggests that human history is
unimportant in explaining the great pandemics; on the
contrary, for the climate forcings on Central Asian pla-
gue systems to have any effect on human populations as
far away as China and Europe, long-range transmission
must be possible and the receiving populations must be
susceptible. Thus, our findings corroborate historical
and archeological records suggesting that the Black
Death at least originated somewhere in Central Asia and
was transmitted (at least partially) through human activ-
ity to more densely populated areas.
Of more immediate concern may be that our findings

also suggest that the partial discontinuation of plague
surveillance following in the wake of the collapse of the
USSR takes place at a time when current and near-
future climate changes seem more likely to favor an
increase than a decrease in plague activity.

Methods
Data
The ice-core data (G) are accumulation data from the
Guliya ice cap of the western Kunlun Shan (35.31°N,
81.51°E), 6200 meters above sea level (Figure 1a). An
annually resolved series (Gann) covers AD 1690-1991
with a ≤1 year dating error and correlates positively
with annual precipitation and temperature to the west
and south of the Himalayas [25,26]. Prior to AD 1690,

only decadal scale resolution (Gdec) exists. The annual
ice-core series are moderately correlated (r = 0.34) with
the decadal series, but taking the 10-year moving aver-
age of the annual series shows good decadal scale corre-
spondence (R2 = 0.83, n = 30, P < 0.01). We make a
combined annual index (G) consisting of the mean of
the annual series (when available) and the decadal series
after being linearly interpolated to annual scale.
The stalagmite isotope data (S’) are from Wanxiang

Cave (33°19’N, 105°00’E) in the Gansu Province of
China (Figure 1a), covering AD 190-2003. The record
consists of 703 δ18O analyses with an average resolution
of 2.5 years (Figures 1 and 4), less than 5-year errors in
230Th age, and less than 15-year errors from subsam-
pling position (23). Analyses of historical records show
that the δ18O records are negatively correlated with pre-
cipitation, and thus with the strength of the monsoon
and related systems as far as glacier advances in the
Swiss Alps [27]. Resolution is highest for the most
recent periods, and during the model training period
(1949-1995) only 1 year (1974) is unresolved. The miss-
ing data earlier in the monsoon index S are extrapolated
from its own autocorrelation structure and the relation
with the ice-core data (Gdec), so that the estimates from
the model in Equation (1) are substituted for missing
values of S’ to form the annual index S:

S s f M S F f Gt mean t dec t t’ ( ( ’, , ) ) ( ),= + + +−0 1 1 25  (1)

MX(y, z, g) denotes applying a function x on the time
series y in moving windows of length z and type g
(either Flat or Gaussian). The model is fitted using a
generalized additive model (gam) with penalized regres-
sion splines. The parameters remain significant at the
5% level when taking autocorrelated normal residuals �
into account with a mixed-model (gamm) structure (see
below), and give an adjusted R2 = 0.48.
The dendrochronological time series (T) is a compo-

site of 28 juniper tree-ring sites sampled over recent
decades by several research teams in the Tien Shan and
Karakorum mountains (Figure 1). These were found to
have remarkably consistent growth patterns over differ-
ent elevations and to reflect regional temperature and
probably precipitation fluctuations [28]. The data are
annually resolved over the AD 686-1999 period.
Thus, predictions before AD 1690 have a quasi-deca-

dal resolution only, and prior to AD 690 they rely on
only two of the three climate series.
The NDVI index is based on the differences between

near-infrared and visible light reflected, giving an index of
chlorophyll on the ground from almost zero (bare rock) to
about 0.8 (rainforest). Our data are monthly composites
from a 0.25 × 0.25 degree FASIR-corrected global data
1982-1998 [50]. Like regional temperatures [51], NDVI
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anomalies are connected over large areas, and we tested
the palaeoclimatic indexes for correlation with annual
mean value of each NDVI pixel 47-145°E, 13-54°N over
the extended summer season (March-October) (Figure 2
and Additional file 1).
The sylvatic plague data are from monitoring of the

Pre-Balkhash plague focus of southeastern Kazakhstan
(748-788°E and 448-478°N) 1949-1995. The focus is
divided into 10 × 10 km2 sectors, four of which consti-
tute a 20 × 20 km primary square (PSQ). Great gerbil
density was estimated as the product of the relatively
constant number of burrow systems per hectare (A) in
each PSQ, q the proportion of burrows being inhabited
(O) and mean number of gerbils per burrow (C)
counted for 10 burrows per sector. Each season v, in
spring (May-June) and autumn (September-October)
[30], O and C were recorded for Q (1-78, median 54)
PSQs. The data on gerbil plague prevalence were gath-
ered independently from the gerbil population data,
with a mean of 201 gerbils (min 1, max 4734) being
trapped during spring and autumn. Of E trapped and
examined gerbils, B tested positively for plague through
isolation of Y. pestis from blood, spleen or liver smears.
These data overlap spatially for about 79% of the popu-
lation estimates at the PSQ scale. Gerbil mortality rates
are not strongly affected by plague (recapture rates of
seropositive animals ~84% that of seronegative over 3
years with bimonthly sampling), and gerbils only exhibit
bacteraemia briefly and sometimes intermittently
[10,12]. Hence, the data underestimate the sylvatic pla-
gue abundance (P) but are unbiasedly proportional to
the following:

P  B E Q O A  Ct v t v t
1

v t
1

q v t q q,v t= ∑ ∑ ( )( )− −
, , , , , , (2)

The human plague data (H) are hospital records from
Almaty, the former capital of Kazakhstan, where plague
cases have been recorded annually since 1904. The
number of cases drops sharply in the early 1950 s, when
coordinated antiplague efforts were initiated. Owing to
the enormous areas in question, the impact of these
efforts on the sylvatic plague dynamics can be assumed
to have been small; but the wide monitoring, public
education and targeted application of insecticides in
areas with domestic animals or human habitation seem
to have successfully reduced the number of human
cases (perhaps by an order of magnitude or more).
The data on conflicts between Han Chinese and Cen-

tral Asian nomads are from Figure 2 in Fang and Liu
[38], linearly extrapolated and smoothed over 30-year
moving averages. The combined index W (Figure 3d) is
the sum of the normalized series for war and migration
frequencies (years with recorded battles or immigrations
per 30 years), and Han/nomad administrative border at

the 110°E longitude, measured as distance south of the
20°N latitude. The data are shown separately in Addi-
tional file 1.

Plague activity model
There are several mechanistic links between weather
fluctuations and plague prevalence, with covarying fac-
tors such as temperature and precipitation affecting host
and vector population growth and density and through
these higher-level effects such as contact and transmis-
sion rates. Hence, a traditional dynamic model would be
hard-pressed to include all relevant factors and the
effects of scale. We have therefore opted for estimating
the net effect of climate through its many pathways
through a more statistical approach rather than use a
more explicit model whose many parameters cannot be
established and thus easily could introduce an unknown
bias. As c some of the climate effects are likely to oper-
ate at lower than annual frequencies (see Additional file
1) or with different effects, being multiplicative or limit-
ing factors, the approach here is to let the effect of
immediate value (or short-term average, to lessen the
effect of dating uncertainty in the S and G series) be
conditioned on the longer-term state for the two series
with precise annual resolution for modern times (T and
S). The long-term state can either be represented by the
mean alone or in combination with minimum, maxi-
mum or variance for the time period in question.
Extreme precipitation/temperature can be as important
as the mean in their impact in a cool, arid environment.
For the G series, preliminary analysis suggested that
only the longer-term state was applicable, owing to
lower temporal accuracy and resolution.
However, the possible number of ways to combine

different time lags and smoothing filters for the cli-
mate variables becomes very large. Thus, conventional
model selection procedures would suffer from massive
problems of multiple testing and the existence of sev-
eral statistically equally valid models. If the data trans-
formations do nothing but randomly change signals
unrelated to the response (plague), we would expect
model explanatory capabilities to be normally distribu-
ted. But if there is a subset of climate variable transfor-
mations that reflect the time scales and parameters
important for real biological processes, these models
will be visible as outliers. To combine a good represen-
tation of the relatively rare better-than-random models
with an unconstrained search of the parameter space,
an adaptive element was combined with random per-
mutations in model generation (see Additional file 1).
We then see whether the performance of the climate-
driven sylvatic plague models is nonrandomly related
to the accuracy of their predictions for the indepen-
dent human case data.
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To combine a good representation of the relatively
rare better-than-random models and an unconstrained
search of the parameter space, an adaptive element was
combined with random permutations in model genera-
tion: A moderately good model found by trial-and-error
fitting was used as a first starting point. A random num-
ber from 1 to n of its n x-values (equations S3 to S7)
were redrawn from their defined ranges (see Table 1),
giving a new model. If this new model had a lower GCV
score than its predecessor, its x-values were retained
and used as the starting point for the next of the 104

iterations. There was also a 1 in 100 chance that the
selection procedure would ‘jump’ to another of the best
(i.e., lowest GCV) 1% of x-values, using these as a new

starting point. Thus, the combination of full and partial
replacement of variables and starting values allowed us
to develop an adaptive search strategy that overrepre-
sented good but rare model settings while retaining a
comprehensive search routine that would not get ‘stuck’
in local optima.
When fitting climate-driven models of sylvatic plague

(equation 8), the transformed climate variables z1-z5
depend on the x-values for iteration i:

If
t z T

t z t f z
i t t

i t i t

≥ =
< = +

⎧
⎨
⎪

⎩⎪

686

686
1

1 0 3 5

,

, ( )
, ,

, , , ,
(3)

Table 1 A summary and description of termsa

Label Type Description Range/value Eq.

x1 Variable Type of moving window Integer (1,..,3) 4

x2 Variable Long-term Max/min/variance relative to mean Sample (0,..,1), Prob (1,..,6)5-1 4

x3 Variable Length of moving window Integer (2,..,20) 4

x4 Variable Gaussian or flat moving windows Factor (True/False) 4,6,7

x5 Variable Standard deviation of Gaussian moving functions Uniform (0,4) 4,6,7

x6 Variable Length of moving window Integer (2,..,10) 4

x7 Variable Gaussian or flat moving windows Factor (True/False) 4,6

x8 Variable Time lag for model variable Integer (-2,..,0) 4

x9 Variable Length of moving window Integer (0,..,4) 5

x10 Variable Type of moving window Integer (1,..,3) 6

x11 Variable Long-term Max/min/variance relative to mean Uniform (0,..,1) 6

x12 Variable Length of moving window Integer (2,..,20) 6

x13 Variable Length of moving window Integer (2,..,10) 6

x14 Variable Time lag Integer (-2,..,0) 6

x15 Variable Length of moving window Integer (1,..,10) 7

x16 Variable Max df used by interaction term smooth function Integer (4,..,10) 8

x17 Variable Max df used by single-variable smooth function Integer (3,..,5) 8

T Data Composite tree-ring index; annual, normalized AD 686 - 2000 3,4

S Data Isotope proxy monsoon index; normalized semi-annual AD 450 - 2000 1,5,6

Gdec Data Glacial accumulation; normalized, decadal, interpolated to annual AD 450 - 2000 1,7

Gann Data Glacial accumulation; normalized, annual AD 1690 - 2000 7

O Data Proportion of gerbil burrows occupied in the PreBalkhash focus AD 1949 - 1995 2

A Data Number of gerbil burrows per hectare in the PreBalkhash focus AD 1949 - 1995 2

C Data Number of gerbils per burrow in the PreBalkhash focus AD 1949 - 1995 2

E Data Number of gerbils examined for plague in the PreBalkhash focus AD 1949 - 1995 2

B Data Number of examined gerbils having plague infection AD 1949 - 1995 2

P Data Abundance of sylvatic plague in PreBalkhash, Kazakhstan. AD 1949 - 1995 2,8

Pi

∧
Estimate Estimated (fitted) values of P for each iteration i of eq. 8. AD 450-2000

d Data Presence/absence plague control AD 450 - 2000 10

H Data Reported number of human plague cases from Kazakhstan AD 1904 - 1995 10

Y Estimate Average predicted sylvatic plague level AD 450-2000 9,10

NDVI Data Normalized Differentiated Vegetation Index AD 1982 to 1998

D Estimate Correlation coefficients for the relationships between Pi

∧
and H AD 1904-1948

W Data The index of conflict between Han Chinese and Central Asian pastoralists [38] AD 450-1700
aFor x1.17, the ranges from which new values were drawn under model construction are given.
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which gives sylvatic plague model i:
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The maximum length of the moving time windows
were set to 10 years for S and T, and 20 for G, as lower
frequencies may not be reliable in a data series of 46
years. The regression splines (equation 8) were bounded
upwards to 10 degrees of freedom for the surfaces (f4,
f5) and to 5 for the spline (f6) to decrease the risk of
overfitting with biologically implausible multimodal
effects and penalized so that the automated selection on
the generalized cross-validation (GCV) criterion could
completely remove terms.
Thus, we obtain a time series of predicted values of

the sylvatic plague models ( Pi

∧ ) for each iteration of the
model construction (equations 3 to 8), and use the
mean of the n best (lowest GCV) as a prediction of syl-
vatic plague abundance so that

Y  t =
∧

=
∑1

1
n

P i t

i

n

, (9)

and

H  d  (Y (Y (Yt t t t-1 t-2 t= + + + +f f f7 8 9) ) )  (10)

The regression models (equations 2, 8 and 10) are
fitted as generalized additive models (gams) with

penalized regression splines, where the penalty removes
terms from the model if unwarranted. f(X|Y, z) denote
penalized thin plate regression splines for the effect of X
and Y constrained to a maximum of z degrees of free-
dom. The error terms � are assumed to have quasi-Pois-
son distributions (i.e., including a dispersion term) with
serial autocorrelation, taking overdispersion and tem-
poral autocorrelation into account when calculating
(Bayesian) P values.
For further analysis, we use the mean predicted value

of the n best (lowest GCV) models of sylvatic plague
(Yt) as an estimate of sylvatic plague abundance and as
a predictor of human plague cases.
All regression models are fitted as generalized additive

models (gams) with penalized regression splines, where
the penalty removes terms from the model if unwar-
ranted. f(X|Y, z) denotes penalized thin plate regression
splines for the effect of X and Y constrained to a maxi-
mum of z degrees of freedom. The error terms � are
assumed to have quasi-Poisson distributions (i.e., includ-
ing a dispersion term) with serial autocorrelation, taking
overdispersion and temporal autocorrelation into
account when calculating (Bayesian) P values.
Throughout this paper, Spearman’s rank correlation

(r) is used when normality assumptions are not met for
the Pearson’s correlation (r). The software R was used
for all modeling.
For further discussion and simulations and simulations

regarding our statistical approach, please see Additional
file 1.

Additional material

Additional file 1: Supporting information containing additional
figures. Figures S1-S13.
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