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S1 Proxy characteristics

The diversity of proxy-specific characteristics complicates their use in climate reconstructions. Each

proxy type or even individual records has particular ways in which climatic signals of interest as well as

noise are fingerprinted in the archives. This is a challenge in its own, but also contributes to the need

to often employ study specific statistical methods. Proxies can be annually resolved and include high-

and low-frequency variability (Fig. S1a, [1]), or capture only either frequency component of variability

(Fig. S1b, nc008 from the International Tree Ring DataBase, ITRDB). Values can be continuous or

discrete (Fig. S1c, [2]). The temporal resolution can be constant or variable (Fig. S1d, [3]) and the

variance can be stationary or changing over time (Fig. S1e, [4]). Proxies can reach thresholds (Fig. S1f,

[5]) and thus not record the complete range of climate variability and datasets can also have gaps

(Fig. S1g, [6], here filled by linear interpolation between 1100 and 1500 AD).

The records presented in Fig. S1 all pass the correlation screening for annual temperature following

the procedure discussed in [7] although not all the records are interpreted as temperature proxies by

the authors [5]. Mostly proxies better represent a seasonal rather than an annual mean but nevertheless

correlate significantly with yearly averages (e.g. [1]). Thus, proxies are used in reconstructions of annual

averages although their seasonality leads to a decrease in signal-to-noise ratio. Note, most proxies in

Fig. S1 have been excluded from this study because they do not have annual resolution or do not pass

our proxy screening.

S2 Proxy data and screening

Proxy data considered in this study include annually resolved, normalized chronologies that extend back

to 1500 AD from the collection by [7]. These records are complemented by additional series that are at

least 500 years in length and have annual resolution (Table S1): Norway: [8, pers. comm.], [9]; Sweden:

[10], [11], [12]; Central Europe: [13], French Alps: [14]; Swiss Alps: [15], [1], [16]; Greater Alpine Region

[17]; Austria: [18], [19], [16]; Italy: [20, updated]; Pyrenees: [21]; Carpathians: [22]; Morocco: [23]

Pakistan: [24], [25], [26]; Kirgistan: [27]; China: [28], [29]; Siberia: [30]; Alaska: [31, 32, 33]; Canada:

[34], [35] and USA: [36].

We verify the climate sensitivity of the proxy records and to subdivide the proxy dataset into tem-

perature vs. precipitation recording series (see Methods section in main text). From our proxy set no

records pass both the screening for temperature and precipitation. The screening results in 56 (128)

temperature (precipitation) sensitive proxy records (Tab. S1 and Tab. S2).
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Figure S1: Proxy records covering the last millennium with different characteristics: tree-ring series a) [1]
and b) nc008 (Stahle, D.W.; ITRDB), indexed documentary-based records c) and g) [2, 6] and sediment
proxies d) e) and f)[3, 4, 5].

Table S1: Proxy records that passed the temperature screening. Corre-

lation coefficient are calculated with respect to the corresponding grid

cell in the CRU TS3 dataset [37] for temperature. Effective degrees of

freedom are used to take autocorrelation into account.

Code r DF DFeff Proxy Publication

ak020 0.24 87 33 TRW ITRDB

ak021 0.35 91 29 TRW ITRDB

arge013 0.42 70 22 TRW ITRDB

arge091 0.26 89 37 TRW ITRDB

buentgen 2005 0.53 98 13 TRW Büntgen et al. 2005

buentgen 2006 0.51 100 42 MXD Büntgen et al. 2006

buentgen 2009 0.43 100 38 TRW Büntgen et al. 2009

buntgen science JJA temp 0.38 99 24 TRW Büntgen et al. 2011

ca082 0.34 76 59 TRW ITRDB

ca529 0.28 83 25 TRW ITRDB
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Table S1: Proxy records that passed the temperature screening. Corre-

lation coefficient are calculated with respect to the corresponding grid

cell in the CRU TS3 dataset [37] for temperature. Effective degrees of

freedom are used to take autocorrelation into account.

Code r DF DFeff Proxy Publication

ca630 0.32 95 63 TRW ITRDB

ca631 0.25 95 53 TRW ITRDB

cana110 0.27 88 31 TRW ITRDB

carpathian 0.21 101 22 TRW Popa et al. 2008

corona 2009 0.41 96 28 TRW+MXD Corona et al. 2009

dolomites 0.34 101 24 TRW Carrer et al. 2007 (updated)

forfjord 0.41 101 101 TRW Kirchhefer et al. (pers. comm.)

gisp2o18 0.41 83 40 Ice core 18O Stuiver et al. 1995

grudd 0.41 100 51 MXD Grudd et al. 2008

jamtland 0.46 102 49 TRW+MXD Gunnarson et al. 2011

junipars 0.28 96 56 TRW ITRDB

lapland 0.25 94 77 TRW Helama et al. 2009

mexi027 0.34 89 38 TRW ITRDB

mexi027e 0.29 89 66 TRW ITRDB

mexi027l 0.26 88 37 TRW ITRDB

mill pyrenees MJJAS 0.6 101 91 TRW ITRDB

nv513 0.23 78 33 TRW ITRDB

orokonztr 0.51 94 51 TRW Cook et al. 2002

schweingruber mxdabd grid1 0.34 56 66 MXD Briffa et al. 2002

schweingruber mxdabd grid10 0.44 56 75 MXD Briffa et al. 2002

schweingruber mxdabd grid100 0.42 56 60 MXD Briffa et al. 2002

schweingruber mxdabd grid11 0.43 56 49 MXD Briffa et al. 2002

schweingruber mxdabd grid110 0.3 56 79 MXD Briffa et al. 2002

schweingruber mxdabd grid111 0.38 55 66 MXD Briffa et al. 2002

schweingruber mxdabd grid115 0.48 56 36 MXD Briffa et al. 2002

schweingruber mxdabd grid12 0.36 55 33 MXD Briffa et al. 2002

schweingruber mxdabd grid16 0.38 56 44 MXD Briffa et al. 2002

schweingruber mxdabd grid18 0.54 56 45 MXD Briffa et al. 2002

schweingruber mxdabd grid19 0.37 56 45 MXD Briffa et al. 2002

schweingruber mxdabd grid2 0.33 56 58 MXD Briffa et al. 2002

schweingruber mxdabd grid20 0.32 56 74 MXD Briffa et al. 2002
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Table S1: Proxy records that passed the temperature screening. Corre-

lation coefficient are calculated with respect to the corresponding grid

cell in the CRU TS3 dataset [37] for temperature. Effective degrees of

freedom are used to take autocorrelation into account.

Code r DF DFeff Proxy Publication

schweingruber mxdabd grid21 0.39 56 77 MXD Briffa et al. 2002

schweingruber mxdabd grid22 0.41 56 88 MXD Briffa et al. 2002

schweingruber mxdabd grid3 0.29 56 60 MXD Briffa et al. 2002

schweingruber mxdabd grid30 0.4 56 28 MXD Briffa et al. 2002

schweingruber mxdabd grid42 0.68 56 53 MXD Briffa et al. 2002

schweingruber mxdabd grid44 0.49 56 40 MXD Briffa et al. 2002

schweingruber mxdabd grid45 0.57 56 52 MXD Briffa et al. 2002

schweingruber mxdabd grid70 0.29 56 53 MXD Briffa et al. 2002

schweingruber mxdabd grid87 0.45 56 45 MXD Briffa et al. 2002

schweingruber mxdabd grid88 0.41 56 62 MXD Briffa et al. 2002

schweingruber mxdabd grid89 0.53 56 33 MXD Briffa et al. 2002

tyrol mxd 0.43 93 87 MXD Esper et al. 2007

vallee merveille 0.47 102 20 TRW Büntgen et al. 2012

vinther 2004 scgreenland 0.52 66 45 Ice core 18O Vinther et al. 2004

wa064 0.38 75 27 TRW ITRDB

r = Correlation coefficient

DF = Degrees of Freedom

DFeff = effective DF taking autocorrelation into account

TRW = Tree Ring Width

MXD = Maximum Latewood Density

Table S2: Proxy records that passed the precipitation screening. Corre-

lation coefficient are calculated with respect to the corresponding grid

cell in the CRU TS3 dataset [37] for precipitation.

Code r DF DFeff Proxy Publication

ak020 0.3 87 33 TRW ITRDB

ar048 0.28 76 41 TRW ITRDB

ar049 0.31 81 78 TRW ITRDB

ar050 0.35 76 58 TRW ITRDB
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Table S2: Proxy records that passed the precipitation screening. Corre-

lation coefficient are calculated with respect to the corresponding grid

cell in the CRU TS3 dataset [37] for precipitation.

Code r DF DFeff Proxy Publication

ar052 0.35 86 76 TRW ITRDB

ar053 0.3 81 49 TRW ITRDB

arge018 0.33 72 32 TRW ITRDB

arge073 0.32 87 19 TRW ITRDB

az084 0.39 67 40 TRW ITRDB

az086 0.41 67 42 TRW ITRDB

az102 0.49 68 28 TRW ITRDB

az106 0.48 71 14 TRW ITRDB

az129 0.29 72 72 TRW ITRDB

az144 0.42 71 50 TRW ITRDB

az520 0.33 82 30 TRW ITRDB

az547 0.3 83 35 TRW ITRDB

az557 0.31 94 94 TRW ITRDB

buntgen science AMJ precip 0.23 102 87 TRW Büntgen et al. 2011, Science

ca051 0.46 66 20 TRW ITRDB

ca073 0.27 76 35 TRW ITRDB

ca087 0.5 77 24 TRW ITRDB

ca528 0.45 83 21 TRW ITRDB

ca529 0.39 83 25 TRW ITRDB

ca531 0.43 82 21 TRW ITRDB

ca532 0.46 83 40 TRW ITRDB

ca533 0.29 79 46 TRW ITRDB

ca535 0.28 75 48 TRW ITRDB

ca612 0.43 89 23 TRW ITRDB

ca628 0.32 94 19 TRW ITRDB

ca629 0.3 94 33 TRW ITRDB

ca632 0.24 95 67 TRW ITRDB

ca633 0.4 96 35 TRW ITRDB

cana135 0.42 88 38 TRW ITRDB

cana136 0.28 88 36 TRW ITRDB

cana137 0.24 88 37 TRW ITRDB

cana194 0.32 95 78 TRW ITRDB
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Table S2: Proxy records that passed the precipitation screening. Corre-

lation coefficient are calculated with respect to the corresponding grid

cell in the CRU TS3 dataset [37] for precipitation.

Code r DF DFeff Proxy Publication

chil002 0.56 68 27 TRW ITRDB

co066 0.33 74 22 TRW ITRDB

co067 0.37 74 74 TRW ITRDB

co076 0.29 66 46 TRW ITRDB

co509l 0.28 74 71 TRW ITRDB

co509x 0.27 74 74 TRW ITRDB

co511 0.27 85 36 TRW ITRDB

co535 0.38 83 51 TRW ITRDB

co556 0.27 91 48 TRW ITRDB

co570 0.38 94 27 TRW ITRDB

co579 0.34 95 55 TRW ITRDB

co580 0.32 95 19 TRW ITRDB

fisher 1996 cgreenland 0.23 78 35 Ice core 18O Fisher et al. 1996

fl001 0.52 87 47 TRW ITRDB

ga002 0.31 81 66 TRW ITRDB

ga003 0.31 81 49 TRW ITRDB

ga004 0.46 80 80 TRW ITRDB

helama sweden MJ precip 0.27 89 59 TRW Helama et al. 2009

id006 0.28 80 74 TRW ITRDB

id009 0.22 88 64 TRW ITRDB

id010 0.23 87 71 TRW ITRDB

il016 0.3 81 39 TRW ITRDB

jord001 0.28 90 67 TRW ITRDB

la001 0.3 84 84 TRW ITRDB

mexi001 0.36 67 43 TRW ITRDB

mexi022 0.3 88 88 TRW ITRDB

mexi023 0.28 89 89 TRW ITRDB

mexi023e 0.25 89 89 TRW ITRDB

mexi023l 0.29 89 57 TRW ITRDB

mo037 0.4 88 87 TRW ITRDB

ms002 0.49 88 63 TRW ITRDB

nc008 0.37 81 67 TRW ITRDB
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Table S2: Proxy records that passed the precipitation screening. Corre-

lation coefficient are calculated with respect to the corresponding grid

cell in the CRU TS3 dataset [37] for precipitation.

Code r DF DFeff Proxy Publication

nm025 0.25 68 68 TRW ITRDB

nm026 0.24 68 36 TRW ITRDB

nm030 0.42 68 51 TRW ITRDB

nm031 0.48 68 51 TRW ITRDB

nm035 0.3 68 20 TRW ITRDB

nm559 0.44 83 52 TRW ITRDB

nm560 0.52 85 45 TRW ITRDB

nm564 0.33 83 26 TRW ITRDB

nm565 0.25 82 44 TRW ITRDB

nm572 0.34 88 41 TRW ITRDB

nv049 0.46 78 37 TRW ITRDB

nv052 0.29 78 46 TRW ITRDB

nv053 0.49 78 60 TRW ITRDB

nv055 0.24 78 74 TRW ITRDB

nv056 0.35 78 35 TRW ITRDB

nv058 0.31 78 70 TRW ITRDB

nv060 0.52 80 30 TRW ITRDB

nv061 0.42 80 35 TRW ITRDB

nv507 0.51 72 47 TRW ITRDB

nv510 0.35 80 26 TRW ITRDB

nv514 0.31 81 23 TRW ITRDB

nv515 0.33 76 23 TRW ITRDB

nv516 0.37 80 31 TRW ITRDB

nv518 0.48 94 49 TRW ITRDB

or006 0.44 77 20 TRW ITRDB

or009 0.49 78 63 TRW ITRDB

or012 0.37 78 41 TRW ITRDB

or015 0.34 78 48 TRW ITRDB

or018 0.43 78 39 TRW ITRDB

or033 0.33 86 17 TRW ITRDB

or060 0.35 92 58 TRW ITRDB

or061 0.37 92 57 TRW ITRDB
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Table S2: Proxy records that passed the precipitation screening. Corre-

lation coefficient are calculated with respect to the corresponding grid

cell in the CRU TS3 dataset [37] for precipitation.

Code r DF DFeff Proxy Publication

or062 0.36 92 52 TRW ITRDB

or063 0.44 94 32 TRW ITRDB

or081 0.3 96 26 TRW ITRDB

pola006 0.24 81 42 TRW ITRDB

qian 2003 yriver 0.4 76 76 documentary Qian et al. 2003

sc004 0.41 81 78 TRW ITRDB

sd017 0.49 87 55 TRW ITRDB

spai011 0.23 84 31 TRW ITRDB

thompson 1992 quelccao18 f 0.31 80 24 Ice core 18O Thompson et al. 1985

treydte f 0.26 94 33 Tree ring 18O Treydte et al. 2006

turk001 0.26 75 23 TRW ITRDB

tx040 0.47 89 89 TRW ITRDB

tx042 0.28 88 81 TRW ITRDB

tx042e 0.27 88 81 TRW ITRDB

tx042l 0.24 88 88 TRW ITRDB

ut018 0.28 68 38 TRW ITRDB

ut022 0.46 67 44 TRW ITRDB

ut024 0.33 66 28 TRW ITRDB

ut508 0.35 81 46 TRW ITRDB

va021 0.28 81 65 TRW ITRDB

w3crn 0.23 97 44 TRW ITRDB

w42crn 0.24 97 30 TRW ITRDB

wimmer wien JJA precip 0.39 92 92 TRW Wimmer et al. 2000

wy002 0.42 68 11 TRW ITRDB

wy006 0.45 67 22 TRW ITRDB

wy019 0.31 86 47 TRW ITRDB

wy026 0.21 93 25 TRW ITRDB

r = Correlation coefficient

DF = Degrees of Freedom

DFeff = effective DF taking autocorrelation into account

TRW = Tree Ring Width

MXD = Maximum Latewood Density
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It is noteworthy that more proxy records passed the correlation screening, but they were not further

considered in this study because the statistical results were contradicted by a process-based understanding

of the proxy archive i.e., the interpretation in the original publication. The mismatch between statistical

outcomes and expert assessment highlights a potential limitation in proxy-selection based only upon

correlation analysis. Not in our study, but in general a proxy might also yield equally valid calibration

statistics with both temperature and precipitation variation. We have shown (see main text) that

temperature and precipitation have distinct variability continuums and thus spectral energy at low

frequencies. A proxy simply appears to not be a trustworthy indicator of both variables across all

frequencies. The risk is particularly high if a low confidence interval is chosen, if correlations are based

on a small number of data points due to temporally low-resolved archives and/or short instrumental

records, if significant trends are present, or if long-term dynamical processes such as persistent long-term

changes in the North Atlantic Oscillation [38] cause temporal instabilities in the covariance between local

temperature and precipitation.

S3 Model simulations

We base the analysis on multi-model ensemble simulations for the last millennium. The models are the

ECHO-G model, the COSMOS model, the CCSM3 model, and a 500-year run from the HADCM model.

ECHO-G runs (called Erik1 and Erik2) are forced by changes in solar irradiance, greenhouse gases and

the radiative effect of volcanic eruptions [39, 40]. For the COSMOS model, the only model which includes

an interactive carbon cycle component, an ensemble of five simulations exists (mil0010, mil0012, mil0021,

mil0025, mil0026; [41]). It additionally to ECHO-G includes aerosol forcing and land-use changes. Solar

irradiance of three ensemble members has a reduced amplitude compared to the ECHO-G simulations

due a new reconstruction and on-going debate about the true amplitude. The HADCM [42] and the

CCSM3 simulations [43] are forced like the ECHO-G simulations, but they use updated and additional

forcings for total solar irradiance, greenhouse gases, volcanic aerosols, and land-use changes.

S4 Model simulation β-value maps

In the main article we present the β-value maps of the model simulation as an average. In Fig. S2 and

S3, the β-value maps for each single simulation highlight that the models simulate comparable variability

continua, which justifies the construction of a model average.
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Figure S2: β-value maps of single model simulations - part 1.
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Figure S3: β-value maps of single model simulations - part 2.

12

© 2013 Macmillan Publishers Limited.  All rights reserved. 

 



S5 β-value sensitivity to spatial grid resolution

The spatial resolution might influence spectral characteristics especially for variables with high spatial

variability such as precipitation because the coarser the grid, the more records are averaged. The β-

values for the instrumental CRU TS3 dataset at resolutions of 0.5 to 2.5 degrees result in nearly identical

β estimates and thus suggest no significant influence of spatial averages over grid boxes (Fig. S4).

Figure S4: CRU TS3 temperature and precipitation β-value maps for various spatial resolutions (grid of
0.5, 1.0 and 2.5 degrees in longitudinal and latitudinal direction).

S6 Seasonality and time-scale dependency of β estimates

Seasonal differences in the β-value patterns are small (Fig. S5). In an analysis of the CCSM model

temperature for the months December to February and June to August, we find slightly higher β-

values over continental northern Asia and in North America during northern hemisphere summer (JJA).

However, all main features such as the land-sea contrast and decreasing β-values toward high latitudes
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are robust and indicate no significant seasonal dependence.

beta value
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Figure S5: CCSM temperature β-value maps based on a) monthly data of the entire year, b) monthly
data of the months December to February and c) the same for June to August.

The length and resolution of the proxy data challenges the analysis of a common frequency range. In

Fig. S6 to S9 we investigate gridded instrumental data and a model simulation, to see the consequences

of the selected frequency range. Moving from 2 months to 20 years (left to right column) as a high

frequency cut-off, the number of data points in the spectral domain to fit a least-squares functions

drops dramatically. Consequently, the results become more uncertain/noisy, as indicated by extremely

contradictory positive and negative β values in neighboring grid boxes.

The low-frequency end of the spectrum has less implications because much longer records are required

to increase the number of data points for low-frequency variability. For best comparability between the

various datasets and due to an observed break in the otherwise time-scale independent β at frequencies

of 1/(100 years) [44], we set the low-frequency limit at 100 years.
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Figure S6: CRU TS3 temperature β-value maps for various frequency ranges.

Figure S7: CRU TS3 precipitation β-value maps for various frequency ranges.
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Figure S8: CCSM temperature β-value maps for various frequency ranges.
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Figure S9: CCSM precipitation β-value maps for various frequency ranges.
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S7 Early instrumental, proxy and model β-value maps

Instrumental temperature and precipitation records with a length of more than 200 years are primarily

found in Europe. β-values of these series for the 1/(2 years) to 1/(100 years) frequency range confirm

that temperature series are redder than precipitation records (Fig. S10a and b) as seen in shorter series

of the CRU TS3 data set.

This difference cannot be observed in proxy data (Fig. S10c and d). Neither can relationships between

the proxy spectral characteristics and their locations be found ((Fig. S10c and d). Furthermore, spatially

proximal proxies often differ substantially in their β-values even if the proxy type is identical (e.g. in

the case of tree-ring width in the western United States).
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Figure S10: β-value maps early instrumental measurements for a) temperature and b) precipitation,
the same for proxies that pass the screening for c) temperature and d) precipitation sensitivity. Model
results are presented for comparison in e) and f). All β-value are calculated for the frequencies range
between 1/(2 years) and 1/(100 years).
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Figure S11: β-value distribution of all temperature proxies (solid line), for a subset of 29 MXD proxies
(dashed) and 25 TRW records (dotted).

S8 β-value distributions for individual proxy types

Collectively, we found the proxy datasets for both temperature and precipitation to be biased red with

beta values for the individual proxy records ranging from 0.04 to 1.31 — a rather wide spread. For the

two most commonly used proxy types in temperature reconstruction of the past millennium, TRW and

MXD, there were enough records to evaluate if the proxy type is related to the beta-value distribution. In

these distributions we find a strong red biases for TRW in comparison with instrumental data (Fig. S11).

MXD, in contrast, is on average only slightly biased. Especially in TRW there is also more variability

in beta-values than expected by instrumental data or climate models demonstrating the significance of

spectral noise in these data.

S9 Mixed temperature and precipitation signals

Proxy records can contain mixed signals of temperature and hydroclimatic conditions and can correlate

with both temperature and precipitation. There are two reasons: first, both variables influence the proxy,

as in the case of tree growth and second, climatic variables are seasonally and/or spatially correlated (see

next section). In the frequency domain, adding a time series with a white spectrum to another series

with a red spectrum will usually lead to an intermediate, slightly red spectrum [45]. This is at least the

case if the time series are uncorrelated. Theoretically, we could think of a special case - as mentioned in

the main article - where temperature and precipitation variability correlate at low frequencies and anti-

correlate at high frequencies, reducing their variability at high frequencies. This would lead to increased
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redness due to a mixed signal. A real world example is the Palmer Drought Severity Index (PDSI, [46])

which is a measure of soil moisture availability and is mainly influenced by temperature and precipitation.

β-value distributions of instrumental temperature, precipitation and instrumental data-based PDSI for

the United States show the expected pattern of nearly white precipitation, red temperature spectra and

PDSI lying in between (Fig. S12). A proxy-based PDSI reconstruction[47] for the same region highlights

again a slight red bias, likely stemming from the input proxy data even though these reconstructions

were explicitly developed to have the same autoregressive properties as the instrumental PDSI.
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Figure S12: β-value distribution for instrumental temperature and precipitation over the continental
United States of America without Alaska. The same for the PDSI calculated based on instrumental data
and proxy data.

S10 Spectral color of multi-proxy climate field reconstructions

In addition to Fig. 3 (main paper) we investigate the spectral color of the only global multi-proxy, climate-

field reconstructions for the last millennium [48]. Here we focus on periods between 20 and 200 years

because “only interdecadal and longer-term variations are meaningfully resolved” in this reconstruction.

The results suggest significant red biases (Fig. S13) in comparison to the model simulations. While not

excluding possibilities for white biases in models [49], the exceptionally red spectra for nearly the entire

spatial domain of the Mann et al. (2009) reconstruction, is consistent both with the overestimation of low

frequency variability in the proxy records and the results seen for the South American reconstructions

(Fig. 3).
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a b

Figure S13: a) Mean spectral color of the model ensemble and b) the decadally resolved climate-field
reconstructions [48]; both for periods between 20 years and 200 years.

S11 Correlation between temperature and precipitation

Most [50, 48], but not all [51], state of the art climate reconstruction methods use the covariance struc-

ture and thus include precipitation records in temperature reconstructions because temperature and

precipitation are regionally and seasonally correlated (Fig. S14). Temperature and precipitation are for

instance positively correlated in European winter (Fig. S14b) and negatively correlated in European

summer (Fig. S14c). This could lead to an incorrect selection of winter precipitation proxies for Euro-

pean temperature reconstructions. This is especially a risk, because sparse data causes seasonal records

to be used in annual mean reconstructions.
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Figure S14: Correlation between temperature and precipitation: (a) annual mean, (b) boreal winter and
(c) boreal summer. The correlation patterns are based on the gridded CRU TS3 data [37].
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[13] Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science

331, 578–582 (2011).
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