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[1] Proxy records may display fluctuations in climate
variability that are artifacts of changing replication and
interseries correlation of constituent time-series and also
from methodological considerations. These biases obscure
the understanding of past climatic variability, including
estimation of extremes, differentiation between natural and
anthropogenic forcing, and climate model validation.
Herein, we evaluate as a case-study, the Esper et al.
(2002) extra-tropical millennial-length temperature
reconstruction that shows increasing variability back in
time. We provide adjustments considering biases at both the
site and hemispheric scales. The variance adjusted record
shows greatest differences before 1200 when sample
replication is quite low. A reduced amplitude of peak
warmth during Medieval Times by about 0.4�C (0.2�C) at
annual (40-year) timescales slightly re-draws the longer-
term evolution of past temperatures. Many other regional
and large-scale reconstructions appear to contain variance-
related biases. Citation: Frank, D., J. Esper, and E. R. Cook

(2007), Adjustment for proxy number and coherence in a large-

scale temperature reconstruction, Geophys. Res. Lett., 34, L16709,

doi:10.1029/2007GL030571.

1. Introduction

[2] Characterizations of the past and present climate
system, that are for example, necessary to differentiate
between the effects of natural and anthropogenically in-
duced forcing, require records that are as accurate as
possible, and in particular, do not possess time dependent
biases that alone could obscure the understanding of the
spatial extent and magnitude of warmth during Medieval
Times or the occurrences of recent extremes in comparison
to pre-industrial conditions. However, the variance of proxy
time-series often reveals significant temporal dependence
with records showing monotonic increases, decreases, and
long-term fluctuations (see Figure S11). What causes these
variance changes, be it methodological derivatives, changes
in proxy qualities and quantities, or a true reflection of
climate, needs to be explored before many attributes of the
climate system can faithfully be addressed.
[3] Inherent to paleoclimatology is the fact that the

number of relevant datasets does not remain stable through
time. Although hundreds of proxy records are available to
estimate regional to hemispheric-scale climate change in
recent centuries, this number drops to a handful of annually

resolved records by the beginning of the past millennium
[Esper et al., 2004; Jones and Mann, 2004; Luterbacher et al.,
2004]. These individual records are in turn of variable quality
(typically decreasing) back in time due to changes in sample
replication (e.g., in tree-ring records), decreasing resolutions
(e.g., ice cores), and the inability to confirm the inferred
climatic response prior to the instrumental period in all proxies.
These factors result in changing uncertainties and robustness
of paleoclimatic data, with the number of series averaged
together directly impacting the local variance [Wigley et al.,
1984; Osborn et al., 1997]. It is thus critical that proxy and
instrumental data analyses – from individual records to large
assemblages – account for and minimize potential artifacts
that may result as replication and quality vary.
[4] Herein, we explore changes in the local variance –

one of the many aspects that reflect and contribute to
reconstruction uncertainty. We seek to i) further general
awareness to the common attributes of temporal changes in
the variance of proxy time-series, ii) explore reasons for
variance changes, and iii) develop and advocate methods to
help minimize variance artifacts. We focus our analysis on a
tree-ring based reconstruction of Northern Hemisphere
extra-tropical temperatures [Esper et al., 2002] (hereinafter
referred to as ECS). In this analysis, we attempt to identify
and minimize the influence of changes in the proxy network
that may bias its variance structure – thereby providing a
‘‘methodological update’’. We suggest this update improves
ECS through a more detailed consideration of the changes
within the dataset.
[5] We first provide background on basic theory and

correction procedures to minimize variance biases due to
changing sample replication and interseries correlation. The
ECS dataset and reconstruction are introduced, followed by
a description of and results from the adjustment methods
employed, and we close with a discussion.

2. Variance Corrections: Theory and Practice

[6] The variance of the mean of a collection of time-
series (Sn

2) is a function of the mean variance of the indi-
vidual time-series (�Si

2), their sample replication (n), and
mean interseries correlation (�r) [Wigley et al., 1984].

S2n ¼ S
2

i

�r n� 1ð Þ þ 1

n

� �

If any terms do not remain time-stable, the resulting average
will possess temporally dependent (possibly artificial)
variance changes. Changes in n are, however, inherent in
paleoclimatology. The reciprocal of the square-bracketed
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term, referred to as the effective independent sample size,
neff, represents the theoretical number of orthogonal time-
series that would provide the same signal as the true (non-
orthogonal) dataset. As �r approaches zero or unity, neff
approaches n or unity, respectively; as n approaches infinity
(n1), neff approaches 1/�r. Osborn et al. [1997] show how
the variance can be adjusted for temporal changes in n and
�r. This method requires that series are stationary and
centered around a mean of zero. Multiplication of a mean
time-series by (neff/n1)1/2 = (�r*neff,)

1/2 should result in a
series that does not contain variance artifacts related to neff
fluctuations. This, however, depends upon assumptions
made when calculating neff.
[7] Most simply, changes in n are quantified and a time

independent estimate of �r is made, as is, for example, in
developing the variance adjusted gridded temperature data-
sets [Brohan et al., 2006]. However, Osborn et al. [1997]
additionally discuss how �r may vary, both as a function of
frequency and time. From analyses with tree-ring data, we
often noticed significant temporal dependence of �r at the
site (roughly defined as a group of samples from about the
same geographical, ecological, and climatic region, gener-
ally collected for the same purpose) level, that may result
from differences in sample homogeneity in recent and
relict wood, a higher percentage of correlations computed
between different samples from the same trees during early
portions of chronologies, and the influence of mean tree-age
upon a chronology’s signal.

[8] In producing site chronologies, and their subsequent
large-scale mean, consideration of changes in n and �r were
not made in ECS. This has likely biased ECS at two levels
– the mean site chronologies and their large-scale mean –
thereby impacting the reconstructed course of extra-tropical
temperatures.

3. ECS Data Set and Reconstruction

[9] Esper et al.’s [2002] reconstruction utilized a collec-
tion of 14 tree-ring sites (Figure 1a). We consider the same
measurement series after the biological age-trend has been
removed via Regional Curve Standardization (RCS) [Briffa
et al., 1992]. Features of ECS include a warming trend in
the past century corresponding to that observed in instru-
mental data, extended periods of cooler conditions – tend-
ing to be more pronounced than those found in many other
large-scale reconstructions – reflecting ‘‘Little Ice Age’’
conditions, and high values around 1000 associated with the
‘‘Medieval Warm Period’’ (MWP) (Figure 1b).
[10] Superimposed upon, or embedded within, the recon-

structed temperatures is a tendency for increased variability
back in time, particularly prior to about 1400 (Figure 1c).
The maximum number of site chronologies (14) spans
1352–1708 with sample replication decreasing to ten site
chronologies prior to 1246 and six chronologies prior to
1072 (Figure 1d). In addition, there is a general decrease
back in time in the number of tree-ring measurement series
available at each site. Between 1500 and 1992 the average
chronology contains just over 28 series, decreasing to about
14 series over 831–1499.

4. Methods

[11] Following the above descriptions, we applied vari-
ance adjustment corrections to all 14 ECS site chronologies
(Figure 1a), and their subsequent large-scale average in this
two-stage averaging process. We utilize both time depen-
dent estimates of �r, referred to hereafter as ‘‘RUNNINGr’’
adjustments, and a more conventional time independent
single estimate of �r calculated over the full dataset, referred
to as ‘‘MEANr’’ adjustments. �r was calculated in 100-year
moving windows for the RUNNINGr adjustment. This
approach appears to yield reasonable estimates of temporal
variations in �r found in site data, with tests showing only
slight sensitivity to the window size (Figure S3b). In
averaging the site chronologies together to form the recon-
struction, we only applied the MEANr adjustment due to the
relatively low between site �r, for which we assume that
most fluctuations are unrelated to changes in underlying
data properties. We follow the procedures as in ECS,
however, we do not explicitly consider the latitude of sites
in the calculation of neff.

5. Variance Adjusted ECS Reconstruction

[12] Site level variance corrections, as shown in figure S2
for the Tirol dataset, were performed for all 14 of the site
chronologies. Results summarizing the variance inflation
present in unadjusted site records are shown in Figure 2a.
Variance corrections are generally less than 20%, but may
rise dramatically during a chronology’s earliest portions
where sample size decreases to a minima (Figure 1d); a

Figure 1. Site locations, reconstruction, and data char-
acteristics for ECS. (a) Map with locations of the 14 sites.
(b) ECS reconstruction scaled to annual land-only 20–90�N
temperatures over the 1856–1979 period and 40-year
splined smoothing. (c) Running STDEV of the ECS dataset
for unfiltered and 40-year high-pass filtered data computed
in a 100-year moving window. (d) Sample size information
including the number of site chronologies and the average
number of series per site.
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two-fold increase is noted for theAthabasca site chronology –
the most extreme case. A few records show notable changes
between 1600–1700 where replication minima during the
transition from living to relict material exist.
[13] We performed two variance adjustments to account

for the changes in the ECS dataset. The first only employed
the MEANr correction for large-scale averaging; the second
employed both the RUNNINGr correction at the site level
and the MEANr correction for the large-scale average
(Figure 2b). These corrections have greatly reduced the
trend towards increased variability in the early portion of
ECS (Figures 1b and 1c), and together demonstrate the
influence of the two averaging steps: the combination of
detrended measurement series to form site chronologies and
the combination of site chronologies to form a large-scale
composite. Correction for the large-scale averaging was
most important and reflects the low �r values between site
chronologies that make their variance highly sensitive to
replication changes. However, despite correction at both the
site and large-scale levels, an increase in variance back in
time is still observed (Figure 2d).

[14] Inspection of the mean variance of the site chronol-
ogies as a function of their length showed that the sites that
extend towards the beginning of the ECS record tend to
have higher variances, so that as the shorter chronologies
drop-out beginning around 1300, the remaining chronolo-
gies tend to inflate the variance of the mean (Figure 2c).
This perhaps includes a species specific component, with
the longest chronologies composed of pine and larch and
the shorter chronologies, spruce – reported to be more
‘‘complacent’’ [Schweingruber, 1996]. Correction for the
different mean chronologies levels of variability was
achieved by giving the records uniform standard deviations
(STDEV) over their common period (1352–1708). This
variance normalization (along with the adjustments for
changing n and �r) yields a record largely void of significant
variance trends present in the ECS record (Figure 2d).
[15] We suggest that the corrections based on mathemat-

ical expectation of averaging result in a reconstruction more
closely representing climatic variability and its temporal
structure than ECS. The variance adjusted record (hereafter,
ECSva) that has been corrected at both the site and large-
scale levels, with additional adjustment for differences in

Figure 2. Variance adjustments for ECS dataset. (a) Corrections as in Figure S2e (note log scale). (b) Variance corrected
series using MEANr for the large-scale average only and also in addition RUNNINGr at the site level. (c) STDEV of
chronologies with horizontal bars showing chronology time-spans. (d) Running 100-year STDEV for various correction
stages calculated with 40-year high-pass fractions after 1856–1979 normalization. (e) Variance adjusted ECS record
(ECSva) along with the unadjusted mean record. Dashed line shows 1961–1990 anomaly reference period mean.
Calibration as in Figure 1b.
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the mean chronologies variances, is shown in figure 2e (see
also Figure S5). Most changes occur prior to about 1200,
when it was already cautioned [Esper et al., 2002; Cook et
al., 2004] that the reconstruction’s quality is reduced.
Adjustment impacts are time dependent with increasing
importance back in time. At 1000, the STDEV of ECS is
inflated by approximately 40% in comparison to the adjust-
ed ECSva record. About 50% of this variance increase was
eliminated by adjusting the large-scale averaging for n
variations, 35% for the mean variance level correction,
and the remainder from site level changes.
[16] The variance adjustments applied result in subtle yet

notable changes. Peak reconstructed temperatures during
the MWP are reduced by about 0.4�C at annual and 0.2�C at
40-year timescales, suggesting the 0.3�C estimate of recent
warmth exceeding those of the MWP by Cook et al. [2004]
was conservative. However, due to calibration uncertainties
related to the appropriate target season, region and meth-
odology [Esper et al., 2005] absolute temperature estimates
should be regarded only as estimates relative to the specific
calibration approach.

6. Large-Scale Records

[17] A comparison with other large-scale temperature
reconstructions (Figure 3a) indicates an increasingly fami-
liar picture of reconstruction coherence and divergence.
However, the general consensus from these records reflects
the greatest warmth during the recent century and around
1000. The methodology used in developing these recon-
structions varies considerably, but some have specifically
included corrections for changes in n at the site and/or the
subsequent large-scale levels. For example, Jones et al.
[1998] used one of the methods suggested by Osborn et al.
[1997], but do not provide more details. In addition, they
normalized the series prior to averaging; this turned out to
be an important factor to the variance increase in ECS. To
the best of our knowledge, none of these approaches
allowed for changes in �r in their adjustments.
[18] Many of these hemispheric reconstructions display

systematic trends in their long-term variance behavior, as
shown by the running STDEVs for the high-passed large-
scale reconstructions (Figure 3b). The long-term increase is

notable in the ECS reconstruction, although perhaps sur-
prisingly, considering their nested approach and a MEANr
type adjustment at the site levels, is also observed in
D’Arrigo et al.’s [2006] reconstruction. Similarly, Jones et
al. [1998] shows an increase at the beginning of the record.
Mann et al. [1999] and particularly Briffa [2000] tend to
show the most stable variability, whereas Moberg et al.’s
[2005] record is characterized by a notable peak in the 16th
century, which occurs when this reconstruction diverges
most substantially from the others. While the highest fre-
quency fraction of most reconstructions is not highly corre-
lated with inter-annual temperatures likely due to the poor
spatial representativity [Esper et al., 2005;Cook et al., 2004],
this overview suggests that many other reconstructions may
be subject to similar biases as the original ECS record.

7. Discussion

[19] Changes in variability are common features found in
both regional (Figures S1 and 2) and large-scale temperature
reconstructions (Figure 3) that affect the estimates of seasonal
to annual climatic extremes, impact long-term trends, and
affect assessments of natural vs. anthropogenic climatic
forcing. The variance adjustment procedures we have applied
appear successful at reducing biases in the ECS reconstruc-
tion. Following Osborn et al. [1997], the methods outlined
eliminate variance biases based onmathematical expectation,
rather than empirical approaches more prone to eliminate true
climatically related changes in variance. Such variance
adjustments should be applicable to all proxy archives,
including corals, ice cores, and documentary evidence.
[20] The variance adjustment requires the time-series to

have a stationary mean centered around zero. Jones et al.
[2001] in applying these methods to instrumental measure-
ments first 30-year high-pass filtered the data with correla-
tions computed and corrections applied only on this
fraction. In contrast to the instrumental series at grid box
scales, tree-ring data generally have substantially lower �r
making them more sensitive to changes in n. The ECS data
also possess noise at both short and long time scales - with
dependence on the spatial region of interest; at large-scales
the ECS dataset exclusively possesses signal at wavelengths
greater than 20-years [Cook et al., 2004]. To consider the
relationships at all of these wavelengths and also average
regionally specific variations, we simply set the long term
mean of each series to zero prior to corrections. We have
assumed that the series are stationary, although if this is not
correct, the adjustments performed might underestimate the
magnitude of climatic extremes during periods of lowered
sample depth, including the MWP.
[21] The RUNNINGr procedure utilized has the advan-

tage of allowing a temporally dependant estimate of �r that
enables adjustment for variance changes related to, for
example, age dependence on trees’ interseries correlation,
or shifts in data characteristics as may occur in records
composed of a living tree site with good site control and an
older portion composed of material where the site locations
are generally less known and more widely distributed.
Importantly, in contrast to the more standard MEANr-type
adjustments, the RUNNINGr approach is less sensitive to
stationarity assumptions, as the individual series are not
required to have the same relationship over their full time

Figure 3. Large-scale temperature reconstructions shown
for (a) the 40-year low pass records, and (b) the STDEV of
the 40-year high-pass reconstructions in a 100-year moving
window. Calibration as in Figure 1b.
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period but rather only over the window length. Examples
shown with individual tree-ring chronologies, indicate the
utility of the RUNNINGr adjustments in this regard. Poten-
tial RUNNINGr weaknesses include sensitivity in estimat-
ing �r to window length, end effects in its computation, and
the possibility of random statistical or climatically induced
fluctuations.
[22] These results and additional examples (Figure S1)

suggest that changes in the local variance in climatic time-
series have a variety of sources – unfortunately implying that
there is no panacea to produce records free of variance biases,
and leading to additional challenges in the study of extreme
event probabilities or anthropogenic signatures of climatic
forcing. Since the most suitable solution seems to be careful
inspection of records to find potential underlying causes for
(artificial) changes in variance, we do not advocate a priori
employment of empirical approaches to equalize the vari-
ability.We also suggest that truncation of chronologies below
a minimum replication threshold, of say 5 series, would
minimize many biases related to changes in n (but not �r).
[23] Osborn et al. [1997] discussed that for large-spatial

scales �r may be different for low and high frequency
components. Based on pseudo-proxy experiments, Brohan
et al. [2006] determined their variance adjustments to be
appropriate at the grid box scale, but slightly biased when
grid boxes are averaged over hemispheric scales. Both of
these studies suggest uncertainties in how variance should
optimally be adjusted at different spatial scales, for different
data types, and at lower frequencies.
[24] Even though the ECSva reconstruction falls within

the ECS error bands, improvement of the central tendency
and the shape of the reconstruction has likely been achieved
by utilizing methods herein that reduce artifacts from
changes in n and �r. However, despite any subtle improve-
ments of the ECSva record over ECS, we emphasize that
new and updated regional chronologies are key in produc-
ing more skillful large-scale reconstructions. Further meth-
odological understanding and refinements will also
contribute to these goals.
[25] Comparison of the ECSva record with other hemi-

spheric-scale temperature reconstructions shows that the
more extreme nature of the ECS series in the peak values
around 1000 are reduced, whereas during the cool 17th
centuries the ECS dataset remains largely unaltered and
approaching the upper limit - along with borehole records
[e.g., Huang et al., 2000] - in estimating the temperature
amplitude over the past 500 years [Esper et al., 2005].
Future proxy reconstructions at the local to hemispheric
scales should seek to identify and eliminate variance biases,
while applying methods to retain potential changes in the
actual variability [Frank et al., 2005] so that robust assess-
ments and attributions of natural and anthropogenic influ-
ences on the climate system can be derived.
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 1 

SUPPLEMENTARY MATERIAL 1 

 2 

Figure S1: Examples of variability changes 3 

Climatic time-series may show a variety of changes in the local variability that result 4 

from a plethora of possible causes. A geographically limited survey of three recently 5 

published warm season temperature reconstructions from Europe serves as an example. 6 

Figure S1 plots 100-year running standard deviations of the 40-year high-pass fractions 7 

after normalization (mean and variances were set to zero and unity) over the 1900- 1977 8 

period to quantify variability changes. 9 

The Büntgen et al. [2006] record (black) is based on 180 maximum latewood 10 

density (MXD) measurement series from living and historical samples and represents June-11 

September (JJAS) temperatures over the greater Alpine region. Despite the fact that this 12 

mean chronology was developed using a variance adjustment similar to the MEANr 13 

correction described in the main text notable changes in variability are observed. Variability 14 

is highest in recent centuries and generally decreases back in time until about 1250 – when 15 

it sharply rises. These variability changes most likely reflect changes in the underlying 16 

sample structure and populations that result in changing 

! 

r  values. During the most recent 17 

century only samples from living trees of known origin from the most homogenous high-18 

elevation sites are included in the chronology. This results in high 

! 

r  values and thus high-19 

variability. As material from historical buildings is included in the chronology, site control 20 

and hence 

! 

r  decreases. The lowered 

! 

r  results in reduced variance. During the earliest 21 

portion of the chronology, the historical material likely comes from a more homogeneous 22 

population as wood from only one village in this region provided this oldest source material, 23 

with increased 

! 

r  and subsequent variability increases. The peak 

! 

r  values ~ 1100 occur 24 

when generally only old material from long-lived trees are included in this record. It should 25 

be noted that this record possesses a much greater and more constant sample replication 26 

than most reconstructions, and additionally that an MEANr type variance stabilization was 27 

used to account for the changes in n. This records serves as an example where a 28 

RUNNINGr type correction might be needed to mitigate variance biases. 29 



 2 

The Xoplaki et al. [2005] record (red) is a spatially averaged record of March-May 30 

(MAM) temperatures over the greater European region. This record is derived from 31 

regressing principal components of a multi-proxy network largely consisting of 32 

documentary data and early instrumental measurements onto European temperature fields. 33 

The reconstruction shows generally decreasing variability back in time. The source for this 34 

tendency likely reflects the nested regression approach applied to a network of fewer and 35 

less well distributed predictors back in time. The quality of predictors generally also 36 

generally decreases back in time when (early) instrumental records are “replaced” with 37 

documentary evidence and natural proxy records. When the models are (re)-calibrated 38 

using the subset of data present for each period, the explained variance generally decreases 39 

back in time and consequently the variability of the most skillful least-squares estimate of 40 

the past climate will similarly decrease (when not subject to rescaling).   41 

The Chuine et al. [2004] record (green) is derived from applying a process-based 42 

phenological model to grape harvest dates from Burgundy, Northeast France and is 43 

calibrated to April-August (AMJJA) temperatures. This record shows a trend of increasing 44 

inter-annual variability back in time. Our understanding of these changes is more 45 

speculative, but could include generally fewer observations or records back in time as 46 

shown in Chuine et al. [2004] figure 1, or perhaps even reflect less variability in recent 47 

centuries as cultivation, harvest techniques, and Pinot Noir varieties were refined. 48 

 49 

Fig S2: Site Chronology Adjustments 50 

The Tirol dataset serves as an example for applying variance adjustments to site 51 

chronologies. The Tirol dataset is composed of 71 Picea abies series from living trees and 52 

historical buildings and spans 1324-1975, and is reasonably representative in terms of 53 

length, number of samples, and replication changes, with somewhat lower than average 

! 

r  54 

values (Fig. S4). Notable features (Fig. S2a) include a prominent warm peak around 1700, 55 

with temperature minima around 1400, 1530, 1600, and 1750, and a decrease in variance 56 

back in time. Both sample replication (Fig. S2b) and 

! 

r  (Fig. S2c) possess local minima 57 

during the 17th century. Highest 

! 

r  values during the last ~100 years likely result from the 58 
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samples being collected from a living-tree site that possesses a more homogeneous signal 59 

than the samples of less-well defined locations obtained from historic buildings. 60 

The temporal changes in variance are mitigated when the Tirol record is subjected to 61 

variance correction, with, for example, the relatively high variation in the recent century 62 

diminished (Fig. S2d). Peak values around 1700 are somewhat reduced as the influences 63 

from the few samples and low 

! 

r during this period tend to cancel each other out. Using the 64 

MEANr corrected chronology as an intermediate baseline, the relative variance inflation due 65 

to changes in both sample replication and 

! 

r can be determined (Fig. S2e; see Fig. S3 for a 66 

MEANr stabilized chronology comparison and RUNNINGr window length tests). The 67 

MEANr stabilization results in strongest variance reductions between 1600-1700, and at the 68 

beginning of the record where sample replication is lowest. Effects from the RUNNINGr 69 

correction tend to mirror the changes in 

! 

r  (and the underlying population structure) with 70 

variance reductions from about 1850 to the end of the record, and centered shortly after 71 

1500. Although slight for most of the record, the variance adjustments result in a 72 

chronology whose local variance depends less on changes in sample structure and 73 

replication, and therefore likely yields a less biased estimate of temperature variability.  74 

 75 

 76 

Figure S3: Regional methods 77 

The variance adjustments shown in the main body of the paper are slightly sensitive 78 

to how the effective sample size is computed and also to window lengths used for 79 

computing 

! 

r . Figure S3a shows the Tirol dataset with a comparison between the 80 

unadjusted and MEANr adjusted records to compliment the results for the RUNNINGr 81 

adjustment shown in figure S2d. The MEANr adjusted corrections are, as expected, most 82 

significant in comparison to the RUNNINGr corrections during the period of low sample 83 

replication around 1700 and also during the early portion of the chronology. At these time 84 

periods the neff in the RUNNINGr corrections is increased by the lower 

! 

r  values. 85 

Adjustments to the most recent centuries with the MEANr correction are minimal and the 86 



 4 

relatively increased variability that exists during this time period from the living trees 87 

remains. 88 

Sensitivity to the window length is shown in figure S3b for 50 and 200 year 89 

windows. The greatest differences occur during the early portion of the chronology which 90 

is an indication of the number of series that are included in the 

! 

r computation. The 91 

sensitivity to the window length is smaller than the choice of using a MEANr as opposed to 92 

a RUNNINGr correction approach for the window sizes tested. We suggest that the range 93 

of window sizes tested 50-200 years is likely reasonable given the mean segment length of 94 

the individual series. 95 

 96 

Figure S4: 

! 

r  and site corrections 97 

The 

! 

r  computed for the individual sites (Fig. S4) is needed for the estimation of 98 

the neff in the RUNNINGr correction approach. For the 14 site locations the mean 

! 

r  is ~ 99 

0.3, with for example, Mongolia (Mon) and Tirol (Tir) having above and below average 

! 

r  100 

values, respectively. Considerable variability over time exists and no universal rules of 

! 

r  101 

behavior can be inferred from these sites, although there is a slight tendency for higher 

! 

r  at 102 

both the beginning and ends of chronologies. As 

! 

r approaches zero, the influence of 103 

changing sample replication increases, which makes changes in sample replication in 104 

general more significant for Tirol than for Mongolia, and also makes changes in the number 105 

of sites in the ECS reconstruction (with a mean between site correlation of about 0.1) more 106 

critical. These tendencies explain why changes in the number of chronologies are a much 107 

more critical factor in the variance increase in the ECS reconstruction in comparison to 108 

corrections at the site level (Fig. 2b). 109 

 110 

Figure S5: Differences between ECS and ECSva 111 

After scaling to instrumental temperatures, the difference series between ECS and 112 

ECSva is shown in figure S5. Differences remain generally small after 1200, with some 113 

high frequency fluctuations and also decadal variations. As demonstrated in the text, the 114 

most significant differences occurred during the earliest portion of the record, where annual 115 
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differences occasionally exceed 0.4 °C and multi-decadal scale differences of ~0.2 °C. In 116 

addition to the major differences resulting from the variance adjustments described herein, 117 

rounding and the specific biweight robust mean algorithms used in calculating the site 118 

chronologies produce some 2nd order variations between these two records. 119 

 120 
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Figure S1. Running STDEV of the 40-year high-pass fraction for three spring/summer 130 

temperature proxy reconstructions from Europe using 100-year windows. The records are: 131 

a tree-ring maximum latewood density (MXD) based reconstruction of June-September 132 

temperatures from the Alps [black; Büntgen et al., 2006], a multi-proxy reconstruction of 133 

spatially and seasonally resolved temperatures based primarily on long instrumental records 134 

and documentary data shown for average March-May temperatures over the European 135 

region [red; Xoplaki et al., 2005], and a reconstruction of April – August temperatures for 136 

the French Burgundy region derived from a process-based phenological model applied to 137 

the record of harvest dates of the Pinot Noir grape [green; Chuine et al., 2004].  138 

 139 

Figure S2. Example of a site chronology, data characteristics, and RUNNINGr adjustment. 140 

A) Mean of the detrended Tirol dataset and 40-year smoothing. B) Sample replication, 141 

horizontal lines show time covered by a measurement series. C) 

! 

r  within a 100-year 142 

window for data pairs with n > 33. D) RUNNINGr (red) and uncorrected Tirol 143 

chronologies (black). E) Ratio of STDEVs in a 50-year window of the MEANr corrected 144 

Tirol chronology to the uncorrected and RUNNINGr corrected records (shown for sample 145 

replication ≥ 4.) 146 

 147 

Figure S3. Additional examples of corrections applied to the Tirol dataset. A) Comparison 148 

of the MEANr stabilized and the uncorrected chronologies. B) Demonstration of the 149 

sensitivity to the window length used to estimate 

! 

r  for the RUNNINGr correction, shown 150 

for windows of 50 and 200 years. 151 

 152 

Figure S4. Mean interseries correlations for the 14 site chronologies computed in a 100-153 

year window. For illustration results are smoothed with a 20-year spline and shown for 154 

sample replication ≥ 4. 155 

 156 

Figure S5. Difference between ECS and ECSva after calibration as in figure 1. Also 157 

shown is a 40 year smoothing. 158 

 159 
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