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Introduction 
In dendrochronology it is common practice to create a mean-value function as the best 
estimate of the trees’ signal at a site. This averaging process helps eliminate noise particular 
to individual trees and cores thereby increasing the signal quality. The variance of the mean-
value function, however, depends upon the number of series averaged together and their 
interseries correlation (Wigley et al. 1984). As the number of single series rarely remains 
constant in dendrochonological or more generally climatic investigations, simple averaging 
routinely produces changes in variance that are solely a by-product of changes in the 
number of series. This issue extends into a wide variety of fields; relevant examples from 
global change studies include the construction of instrumental averages with diminishing 
numbers of stations and spatial representativity back in time (Jones et al. 1999), averages of 
proxy networks for climate reconstruction (Esper et al. 2002), and in the construction of 
individual tree-ring chronologies (e.g., Esper et al. 2005, this volume). 
Osborn et al. (1997) theoretically provided and experimentally tested a correction procedure 
to eliminate variance changes resulting from changing sample replication.  The basic 
correction centers around the use of the effective independent sample size, Neff, which 
considers the sample replication at every time and the mean interseries correlation 
(hereafter, rbar) between the samples. This is defined as: 

! 

Neff =
n(t)

1+ (n(t) "1)r
 

where n(t) is the number of series at time t, and r is rbar. Multiplication of the mean 
timeseries with the square root of Neff at every time t theoretically results in variance that is 
independent of sample size. This result can then be further scaled by the square root of 
1/rbar to yield an estimate of the mean series in the original units. In the limiting cases, when 
the rbar is zero or unity, Neff obtains values of the true sample size and unity, respectively. 
Osborn et al. (1997) extend this basic correction procedure with examples showing 
possibilities and methods to account for temporal and frequency dependence in rbar. 
Temporal dependence in rbar may arise from changes in the spatial density of series being 
averaged together, for example. 
In this paper we intend to revisit this topic from a more applied perspective. Specifically, our 
motivation comes from evaluating the final chronology for the Morocco dataset (see Esper et 
al. 2005, this volume) corrected with the commonly applied variance stabilization routine 
incorporated into the program ARSTAN (Cook 1985). After the application of the 



 57 

“Briffa/Osborn” correction, the variance of this chronology was observed to still increase back 
in time (Esper et al. 2005, this volume). Corresponding to this increase in variance is an 
increase in the rbar, which is to a large extent a likely consequence of the higher percentage 
of correlations computed between cores collected from the same trees (see figure 6 in Esper 
et al. 2005, this volume). We hypothesize that the correction procedure used in ARSTAN, 
which does not consider time-dependent changes in the rbar, is limited by this trend in 
correlation. To more completely assess and potentially improve upon this situation, we 
developed a routine, following the guidelines of Osborn et al. (1997), to allow for time 
dependent changes in correlation to be considered in the variance stabilization. We test and 
compare this time dependent rbar correction method, with the uncorrected average and the 
sample size correction method that uses a single time independent rbar value (as in 
ARSTAN). 
This paper contains two major themes. In part 1, synthetic datasets are introduced to 
demonstrate the effects of changing sample size and correlation on the computation of mean 
chronologies. For each dataset, three mean-value functions and running standard deviations 
of these mean-value functions are presented. In the second part, we look at the Morocco 
dataset and evaluate its characteristics with the same array of computations. Results lead us 
to explore some of the characteristics of the basic tree-ring data from Morocco. We close 
with a brief discussion and conclusion.  
 
Data 
For this study we utilize a set of three synthetic datasets composed of white noise. These 
datasets possess varying correlation structures and varying sample replication (Fig.1) to 
allow evaluation of the influence of these features on computation and correction of mean-
value functions. The individual series within these datasets have constant variance and no 
autocorrelation apart from that resulting from chance alone. These three “Cases” should a) 
illustrate how and when variance inflation occurs and b) how the different variance 
corrections can or cannot account for the time dependent changes in sample replication and 
correlation. In Case 1, a dataset with nearly time stable correlations, yet decreasing sample 
size is studied. In Case 2, a dataset with constant sample replication and increasing rbar 
back in time is studied. For Case 3, the two basic characteristics of Cases 1 & 2 are 
combined, for a synthetic dataset that possesses diminishing sample replication and 
increasing rbar values back in time. This third case most closely mimics the sample 
replication and rbar characteristics of the Morocco dataset. It should be noted however that 
as these datasets are generated from a random normal distribution with independence 
between neighboring observations, they do not fully capture the characteristics of real tree-
ring data. Nevertheless, we do believe they represent a good basis for demonstrating and 
testing some of the features relevant to the computation and variance correction of a mean-
value function. 
The Morocco dataset is a collection of Cedrus atlantica samples taken from living trees in 
2002. The individual series, after applying an adaptive power-transformation (Cook and 
Peters, 1997) and detrending with a 300-year spline, are the basic data utilized in the 



 58 

calculations herein. These data and their treatments are the same as those used for the final 
chronology shown in Esper et al. 2005 (this volume), although in closing we briefly detail 
some of the attributes of the raw and ratio detrended Morocco data. The reader is referred to 
the Esper et al. 2005 publication (this volume) for more details and information about these 
data. 
 

 
 
Figure 1: Sample replication (A) and rbar computed in 50-year running windows (B) for the three 
synthetic datasets. Case 1:stable rbar, decreasing n; Case 2: increasing rbar, constant n; Case 3: 
increasing rbar, decreasing n. 
 
Methods 
For all datasets we computed mean time series with a) no sample size correction, b) with the 
basic correction for sample size that utilizes a single mean estimate of the rbar, and c) a 
correction that considers both the sample size and temporal dependence of rbar. Herein, we 
refer to these chronologies as: UNCORRECTED, MEANr corrected, and RUNNINGr 
corrected. The MEANr corrected version, following Osborn et al. (1997) should be rather 
similar to that used in ARSTAN, although there is a range of possibilities in exactly how rbar 
is determined. For the RUNNINGr correction, we utilized a 50-year window to estimate the 
rbar at every time t. Rbar is computed as the average Pearson correlation, of all pairs that 
share at least 25 years of data, within a given window. This diverges from the Osborn et al. 
(1997) approach, wherein for every time t, the rbar was determined as the average 
correlation among all data pairs with data during time t, computed over their maximum period 
of overlap. That is, in the Osborn et al. (1997) approach, the rbar only changes when sample 
replication changes, and the period of rbar estimation occurs over the period of maximum 
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common overlap and not confined within a running window as in our approach. With the 
RUNNINGr correction, additional ambiguity exists in the window size used for computation. 
The final UNCORRECTED, MEANr, and RUNNINGr corrected series are evaluated by 
simply plotting the resulting chronologies, and by plotting running standard deviations of the 
mean-value functions computed within 50-year windows.  
 
Results 
Variance adjustments in synthetic datasets 
Figure 2 shows the final chronologies and running standard deviation for Case 1 which has a 
decreasing sample replication and a nearly constant rbar of about 0.2. A clear increase in 
variance is observed in the UNCORRECTED mean, when the sample replication drops from 
50 to 10 and then again from 10 to 3. The UNCORRECTED mean is rather insensitive to the 
change from 100 to 50 series and reflects the asymptotic nature of Neff for larger sample 
sizes. The MEANr and RUNNINGr chronologies are quite similar and neither shows an 
increase in variance. Periods when the MEANr chronology has greater variance than the 
RUNNINGr chronology, correspond to time periods when the running rbar is greater than the 
mean rbar (Fig. 1b).  
 

 
 
Figure 2: Mean value functions (A) and their running standard deviation (B) computed for the Case 1 
synthetic dataset. The times corresponding to replication changes are indicated as vertical dashed 
lines in B. 
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Figure 3: Mean value functions (A) and their running standard deviation (B) computed for the Case 2 
synthetic dataset. 
 
For the Case 2 dataset (Fig 3.), where sample size remains constant and rbar essentially 
increases monotonically (Fig. 1b), the UNCORRECTED and MEANr corrected chronologies 
are identical, with both possessing substantially greater variance towards the higher rbar 
values back in time. In contrast, the variance of the RUNNINGr chronology remains 
reasonably stable over the entire chronology, with deviations representing only the stochastic 
nature of this dataset. This demonstrates the ability of the RUNNINGr correction to “follow” 
changes in the underlying correlation structure and subsequently mitigate or eliminate these 
biases during the computation of the mean-value function. It should be noted, that the time 
dependent correlation demonstrated by Osborn et al. (1997) would produce the same results 
as the UNCORRECTED and MEANr corrected versions here, because using their 
methodology the correlations are computed over the period of individual series overlap, 
which in this case does not change. However, Case 2 (constant replication, increasing rbar) 
is perhaps not very realistic for real data characteristics and is used here primarily to 
illustrate the systematic changes that result from changes in rbar alone. 
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Figure 4: Mean value functions (A) and their running standard deviation (B) computed for the Case 3 
synthetic dataset. The times corresponding to replication changes are indicated as vertical dashed 
lines in B. 
 
In Case 3, as could be inferred, a mixture of the attributes of the mean value functions from 
Cases 1 and 2 are observed (Fig.4). The variance of the RUNNINGr corrected chronology 
remains rather stable, as this method successfully considered the time dependent changes 
in rbar and sample replication. Both the UNCORRECTED and MEANr corrected 
chronologies show a noticeable increase in variance roughly corresponding to the time when 
replication drops from 100 to 50 series. It is however likely that the majority of this increase in 
both series is due to the somewhat steeper increase in correlation at about this time, rather 
than the decrease in sample replication.  In comparison to Case 1, the difference between 
the variances of the UNCORRECTED and MEANr corrected chronologies in Case 3 is 
smaller between 1300 and 2000. This is a result of the greater insensitivity to changes in 
sample replication for higher rbar values (Osborn et al. 1997), which are on average higher 
for Case 3 than for Case 1. During the earliest period, the variance of the UNCORRECTED 
chronology shows substantially inflated values, in comparison to the MEANr and RUNNINGr 
corrected chronologies. In this example, based on the differences between the standard 
deviation for the different computations during the early portion of the record, it can be 
estimated that during this early time period, about one third of the standard deviation 
increase in the UNCORRECTED chronology results from the increase in correlation over the 
course of this series, and about two-thirds from sample replication changes. Interestingly at 
around 1400 where the difference in variance between the MEANr corrected and RUNNINGr 
corrected chronologies is greatest, rbar reaches a local maximum value (Fig. 1b), which 
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results in a decrease in Neff, and hence also the standard deviation for the RUNNINGr 
corrected series. 
 
Variance adjustments in Cedrus atlantica (Morocco) 
We applied the same basic procedure as described above to the Cedrus atlantica dataset 
(see Esper et al. 2005, this volume), with results shown in Figure 5. The raw tree-ring data 
were subjected to a power-transform to eliminate the heteroscedastic behavior of the raw 
ring width series (Cook and Peters, 1997) and detrended by taking residuals between the 
power-transformed data and 300-year-spline fits to eliminate the age-trend. As is 
conventional for tree-ring indices, the detrended series were rescaled automatically in 
ARSTAN to have a means near unity. However, it is important to note the variance 
corrections outlined here assume the individual series to have a mean of zero. To approach 
this condition, we simply subtracted 1 from all series, resulting in series that are centered 
approximately around zero. Also included for comparison is the “Briffa/Osborn” variance 
adjusted version of the Morocco dataset as computed in ARSTAN. To account for the 
different scalings applied in our calculations and those from ARSTAN, all series were 
normalized with respect to the 20th century.  
 

 
 
Figure 5: Mean value functions (A) and their running standard deviation (B) computed for the Morocco 
dataset. Also included is the ARSTAN computed correction. For more details and plots showing 
sample size and interseries correlations, the reader is referred to Esper et al. (this volume). 
 
The UNCORRECTED, ARSTAN and MEANr corrected versions are nearly identical back to 
1400. Prior to this time the UNCORRECTED variance splays apart from the other series, 
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with substantial differences during the first hundred or so years. The ARSTAN and MEANr 
corrected chronologies are nearly identical, with only slight computational differences present 
during the early portion of the records. The RUNNINGr corrected chronology possesses the 
smallest trend in variance, indicating the utility of this method for consideration of the 
increase in rbar (and decrease in replication) back in time. However, in contrast to the 
synthetic dataset cases shown above, even the RUNNINGr chronology possesses a 
noticeable trend in the variance. Although mitigating the variance increase, this result largely 
refutes our initial hypothesis that the RUNNINGr correction procedure would eliminate the 
variance trend in the final Morocco chronology, which we assumed was primarily a 
consequence of the rbar increase towards the early portion of this dataset. 
In an attempt to understand the source of this variance increase, we computed running 
standard deviations for the individual series of the Morocco dataset (Fig. 6). It is evident that 
the average of the individual standard deviations increases back in time. In all likelihood, this 
tendency explains most of the variance increase still present in the RUNNINGr computed 
version of the Morocco chronology. None of the correction methods applied are able to “see” 
or cope with this apparent variance nonstationarity of the individual series. 
 

 
 
Figure 6: 50-year running standard deviations for the individual series from the Morocco dataset, along 
with their mean. 
 
To explore if the variance of the individual series may increase with decreasing biological 
age, as is done for Regional Curve Standardization (Briffa et al. 1992, Esper et al. 2003), we 
aligned the data by cambial age (although pith-offset data were not used) and again 
computed the running standard deviations and their mean (Fig. 7). To test the influence of 
the detrending method, we also detrended the raw tree-ring series using ratios from 300-
year-splines instead of power-transformation with residuals. The means from the age-aligned 
raw and ratio detrended running standard deviations are also shown in figure 7. The 
standard deviation of the raw series shows the most pronounced trend with biological age. 
This tendency diminishes with the power-transformed series, and is essentially non-existent 
with the ratio detrended series. It appears from these results, that these age-related 
tendencies in variance, as measured here, are not fully removed by the spread versus level 
calculations used in the adaptive power transformation, yet are removed by the ratio 
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detrending. It thus seems likely, that the biological age-related tendencies in the variance 
structure of the power-transformed/residual detrended tree-ring data play a central role in the 
variance increase found even in the RUNNINGr corrected Morocco mean-value function.  
 

 
 
Figure 7: 50-year running standard deviations for the age-aligned individual series from the Morocco 
dataset, along with their mean. Also shown are mean standard deviations for the age-aligned raw 
data, and 300-year-spline ratio detrended data. 
 
 
Discussion and conclusions 
Using the synthetic data we demonstrated how an increase in variance can occur from both 
decreasing sample replication or increasing rbar. Both the MEANr and RUNNINGr variance 
stabilization methods mitigated variance inflation due to changing sample size, however only 
the RUNNINGr method can eliminate variance changes resulting from fluctuations in the 
interseries correlation. 
However, with the real dataset, the situation turned out to be more complicated. Although we 
hypothesized, due to increasing interseries correlations back in time, that the RUNNINGr 
correction would eliminate the increase in variance found in the Morocco dataset after using 
the “Briffa/Osborn” correction method in ARSTAN, this was not the case. The RUNNINGr 
correction mitigated this variance inflation in comparison to the MEANr correction, however, 
the final RUNNINGr corrected chronology still showed a variance increase. This result was 
unexpected after tests with the synthetic data. The primary source of this variance increase 
appears to be that after detrending with a power-transformation and a 300-year spline the 
variance of the single series (as measured by 50-year running standard deviations) showed 
a biological age-related component. The greater variance at younger biological ages and the 
underlying age-structure of this dataset are likely to contribute to the variance trend for all 
computations and corrections of the mean chronology. Further exploration of this issue is 
required to more completely understand the origin of this tendency, and to determine if it is 
unique to this perhaps unusual dataset composed of multi-centennial to millennial length 
tree-ring series. More efforts to understand the characteristics of ring-width series that make 
them more or less susceptible to variance nonstationarities in general or after power-
transformation are also required. 
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For brevity we have not digressed even further by showing figures for the Morocco dataset 
detrended with the ratios method. However, these results (not shown), indicate that the 
uncorrected chronology possesses a strong increase in variance back in time, which is 
greatly reduced if the MEANr correction is applied and essentially eliminated if the 
RUNNINGr correction is performed. If the only criteria for chronology development were the 
presence of a relatively constant variance, we could suggest at this point that the ratios 
detrending might be more suitable for this dataset. However, this dataset, with long-lived 
trees that often possess exceptionally narrow outer rings, is particularly susceptible to index 
value inflation from detrending curves that enter “the danger zone” (Cook and Peters, 1997). 
More efforts are needed to untangle costs and benefits in detrending with the power-
transformation in comparison to ratios for this dataset, and to understand more generally if 
other tree-ring sites share these same attributes. For the Morocco dataset presented, with 
the methods tested, it appears that while the RUNNINGr correction perhaps performed best, 
the variance structure of the final chronology is still not completely optimal. Exploration of 
other variance stabilization methods, including an empirically based spline correction (which 
is also an option in ARSTAN) could be considered. In any case, we can recommend 
inspection of the individual series variances (perhaps after age-aligning) to determine if there 
are trends or artifacts that will influence the variance of the underlying chronology. More 
generally these same issues were seen to effect the variance corrections applied in 
developing regional means of tree-ring data, when the chronologies themselves were not 
computed with sample size corrections (Osborn et al. 1997). Similar considerations are 
easily relevant for the computation of hemispheric-scale temperature reconstructions. 
From the synthetic cases, with more stable individual variances, the RUNNINGr correction 
produced results most consistent with the expectation of constant variance in the mean-value 
function. Only RUNNINGr types of corrections can mitigate variance artifacts resulting from 
temporally changing interseries correlations. However, when rbar fluctuates randomly, as in 
Case 1 presented above, it is possible “overkill” to apply the RUNNINGr correction, when the 
MEANr correction would perhaps be justified. Variance corrections similar to the RUNNINGr 
approach used here might be helpful in the computation of gridded or large scale 
instrumental mean datasets. These datasets not only rely upon fewer and fewer stations 
back in time, but the locations of the earliest remaining stations tend to be more concentrated 
in certain areas such as Central Europe or Eastern North America. The RUNNINGr 
correction applied herein seems to have an additional interesting attribute: during times with 
greater correlation the variance is diminished. This has implications for the reconstruction of 
climatologically extreme periods (e.g. the early 19th century in Europe), which are probably 
not only imprinted on proxy series themselves, but also on the correlation of the individual 
series. This correction might help mitigate non-linearities resulting from strong pointer years. 
It is an objective in dendroclimatology for the variance properties of the mean-value function 
to most closely represent those of the instrumental target data. In this regard, some success 
was met using a network to look at the variability of extreme events in the Alps (Frank et al. 
2005). To better approach this condition, following the work of Osborn et al. (1997), we have 
shown herein that corrections for sample size are often needed. Additionally, we have shown 
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examples in which the correction methods routinely applied are additionally complicated by 
time dependence of rbar and by variance non-stationarity of the raw data. The application or 
omission of variance adjustments to the mean-value function of time series often has non-
negligible consequences. These considerations become critically important in 
paleoclimatology during the early periods of instrumental or proxy records when sample 
replication is lowest and spatial, biological, ecological, and sampling representativity are 
most likely to be unique. 
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