Introducing Pietarinen expansion method into single-channel (!) pole extraction problem

A. Švarc
Rudjer Bošković Institute, Zagreb, Croatia

Mirza Hadžìmehmedović, Hedìm Osmanović, and Jugoslav Stahov University of Tuzla, Tuzla, Bosnia and Herzegovina

Lothar Tiator
Institut für Kernphyik, Universität Mainz, D-55099 Maìnz, Germany

Ron L. Workman

Data Analysis Center at the Institute for Nuclear Studies, Department of Physics, The George Washington University, Washington, D.C. 20052

Motivation and justification

Poles are finally established as the ultimate resonance criterion

1. Conclusions of ATHOS 2012, ATHOS2013
2. Recent change in PDG attitude

Immediate problem:
It is a common knowledge how to extract Breit-Wigner parameters from experimental data,

However, it is rather obscure how to do it with poles

We know how to extract Breit-Wigner parameters from experiment because they are defined on the real axes. (see Camogli Michel)

But, how do we extract pole parameters from experiment because we have to go to the complex energy plane?

The usual answer was:

1. Do it globally

One first has to make a model which fits the data, SOLVE IT, and obtain an explicit analytic function in the full complex energy plane. Second, one has to look for the complex poles of the obtained analytic functions.
2. Do it locally

Speed plot, expansions in power series, etc

Taylor expansion

PHYSICAL REVIEW D 90, 097901 (2014)

Precise determination of resonance pole parameters through Padé approximants

Pere Masjuan, ${ }^{1, *}$ Jacobo Ruiz de Elvira, ${ }^{2, \dagger}$ and Juan José Sanz-Cillero ${ }^{3, \hbar}$

Let us consider a function $F(x)$, analytical in a disk $B_{\delta}\left(x_{0}\right)$. Then, the Taylor expansion

$$
\begin{equation*}
\mathcal{P}_{N}\left(x, x_{0}\right)=\sum_{n=0}^{N} a_{n}\left(x-x_{0}\right)^{n}, \tag{1}
\end{equation*}
$$

converges to $F(x)$ in $B_{\delta}\left(x_{0}\right)$ for $N \rightarrow \infty$, with derivatives given by $a_{n}=F^{(n)}\left(x_{0}\right) / n$!.

The scenario changes, however, when the function $F(x)$ is not analytical anymore, for example when it has a single pole at $x=x_{p}$ inside the disk $B_{\delta}\left(x_{0}\right)$. In this case, the Taylor series does not converge any more, so we need a different procedure to extract information about the function and its derivatives.

A special case of interest for the present work is Montessus de Ballore's theorem [6, 17, 18]. Montessus' theorem states that when the amplitude $F(x)$ is analytical inside the disk $B_{\delta}\left(x_{0}\right)$ except for a single pole at $x=x_{p}$ the sequence of one-pole Padé Approximants $P_{1}^{N}\left(x, x_{0}\right)$ around x_{0},

$$
\begin{equation*}
P_{1}^{N}\left(x, x_{0}\right)=\sum_{k=0}^{N-1} a_{k}\left(x-x_{0}\right)^{k}+\frac{a_{N}\left(x-x_{0}\right)^{N}}{1-\frac{a_{N+1}}{a_{N}}\left(x-x_{0}\right)} \tag{3}
\end{equation*}
$$

converges to $F(x)$ in any compact subset of the disk excluding the pole x_{p}, i.e,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} P_{1}^{N}\left(x, x_{0}\right)=F(x) \tag{4}
\end{equation*}
$$

Regularization method

PHYSICAL REVIEW D 77, 116007 (2008)

Resolution of the multichannel anomaly in the extraction of S-matrix resonance-pole parameters
Saša Ceci, ${ }^{1,2, *}$ Jugoslav Stahov, ${ }^{3,4}$ Alfred Švarc, ${ }^{1}$ Shon Watson, ${ }^{3}$ and Branimir Zauner ${ }^{1}$

The function $T(z)$ with a simple pole at μ is regularized by multiplying it with a simple zero at μ

$$
\begin{equation*}
f(z)=(\mu-z) T(z) \tag{8}
\end{equation*}
$$

From this definition and Eq. (7), it is evident that the value of $f(\mu)$ is equal to the residue r of $T(z)$ at point μ. As we have the access to the function values on real axis only, the Taylor expansion of f is performed about some real x to give the value (residue) at the pole μ (where background is highly suppressed)

$$
\begin{equation*}
f(\mu)=\sum_{n=0}^{N} \frac{f^{(n)}(x)}{n!}(\mu-x)^{n}+R_{N}(x, \mu) \tag{9}
\end{equation*}
$$

The expansion is explicitly written to the order N and the remainder is designated by $R_{N}(x, \mu)$. Using the mathematical induction one can show that the N th derivative of $f(x)$, given by Eq. (8), is

$$
\begin{equation*}
f^{(n)}(x)=(\mu-x) T^{(n)}(x)-n T^{(n-1)}(x) . \tag{10}
\end{equation*}
$$

Insertion of this derivative into the Taylor expansion conveniently cancels all consecutive terms in the sum, except the last one

$$
\begin{equation*}
f(\mu)=\frac{T^{(N)}(x)}{N!}(\mu-x)^{(N+1)}+R_{N}(x, \mu), \tag{11}
\end{equation*}
$$

$$
\mu=a+i b \quad \text { function residue }|f(\mu)|
$$

$$
\begin{equation*}
\frac{(a-x)^{2}+b^{2}}{\sqrt[N+1]{|f(\mu)|^{2}}}=\sqrt[N+1]{\frac{(N!)^{2}}{\left|T^{(N)}(x)\right|^{2}}} \tag{13}
\end{equation*}
$$

In both cases we have n-TH DERIVATIVE of the function

PROBLEMS for local solutions !

Direct problems for global solutions:

- Many models
- Complicated and different analytic structure
- Elaborated method for solving the problem
- SINGLE USER RESULTS

Abstract

In Camogli 2012, during „coffee-break conversation" I have claimed that extracting poles from theoretical and even from experimental data should in principle be possible, and I have promised to try to propose a simple method.

Now I am fulfilling this promise.

Is it possible to create universal approach, usable for everyone, and above all REPRODUCIBLE?

I have tryed to do it starting from very general principles:

1. Analyticity
2. Unitarity

Idea:
TRADING ADVANTAGES

GLOBALITY FOR SIMPLICITY

THEORETICAL MODELS

If you create a model, the advantage is that your solution is absolutely global, valid in the full complex energy plane (all Rieman sheets). The drawback is that the solution is complicated, pole positions are usually energy dependent otherwise you cannot ensure simple physical requirements like absence of the poles on the first, physical Riemann sheet, Schwartz reflection principle, etc. It is complicated and demanding to solve it.

WE PROPOSE

Construct an analytic function NOT in the full complex energy plane, but CLOSE to the real axes in the area of dominant nucleon resonances, which is fitting the data by using

LAURENT EXPANSION.

Why Laurent's decomposition?

- It is a unique representation of the complex analytic function on a dense set in terms of pole parts and regular background
- It explicitly seperates pole terms from regular part
- It has constant pole parameters
- It is not a representation in the full complex energy plane, but has its well defined area of convergence

IMPORTANT TO UNDERSTAND:

It is not an expansion in pole positions with constant coefficients (as some referees reproached), because it is defined only in a part of the complex energy plane.

Expansion of the T-matrix in terms of constant coefficients

$$
\begin{gather*}
T(\omega) \approx \sum_{i=1}^{k} \frac{x_{i} \Gamma_{i} / 2}{\omega-M_{i}-\imath \Gamma_{i} / 2}+B(\omega) \\
x_{i}, M_{i}, \Gamma_{i}, \omega \in \mathbb{R} \tag{4}
\end{gather*}
$$

cannot be valid in principle.
Namely, poles with constant coefficients have poles on ALL physical sheets, and that violates common sense because only bound states are allowed to be located on the physical sheet.

The only way how to accomodate both, requirements of absence of poles on the physical sheet, and Schwartz principle requires that pole positions become energy dependent:

$$
\frac{\Gamma(\omega) e^{\imath \phi}}{\omega-M(\omega)-\imath K(\omega) \Gamma(\omega)}
$$

However, even this function has its Laurent decomposition

$$
\begin{equation*}
\frac{\Gamma(\omega) e^{\imath \phi}}{\omega-M(\omega)-\imath K(\omega) \Gamma(\omega)} \equiv \frac{a_{-1}}{\omega-\omega_{0}}+\sum_{n=0}^{\infty} a_{n}\left(\omega-\omega_{0}\right)^{n} . \tag{5}
\end{equation*}
$$

But it is valid only in the part of the complex energy plane

1. Analyticity

Analyticity is introduced via generalized Laurent's decomposition (Mittag-Leffler theorem)

> However, the functions we meet and analyze in reality may and do contain more than one pole for $\omega \neq \omega_{0}$. So if we iterate this procedure using Mittag-Leffler theorem [4] which says that a meromorphic function can be expressed in terms of its poles and associated residues combined with additional entire function, we can without loss of generality write down the generalized Laurent expansion for the function with k poles:

Assumption:

- We are working with first order poles so all negative powers in Laurent's expansion lower than

$$
\begin{gathered}
n<-1 \\
\text { are suppressed }
\end{gathered}
$$

Now, we have two parts, of Laurent's decomposition:

1. Poles
2. Regular part

Idea: TO MIMICK THE PROCEDURE FOR BREIT-WIGNER CASE

Bw:

$$
T=\frac{x \frac{\Gamma}{2}}{M-w-i \frac{\Gamma}{2}}+B g(w)
$$

With Laurent's decompositions for simple poles

$$
T(\omega)=\frac{\left(a_{R}+i a_{I}\right)_{-1}}{\omega_{0}-\omega}+\sum_{n=0}^{\infty} a_{n}\left(\omega_{0}-\omega\right)^{n}
$$

where
regular function

$$
\sum_{n=0}^{\infty} a_{n}\left(\omega_{0}-\omega\right)^{n}=\tilde{B}(\omega)
$$

The problem is how to determine regular function $B(w)$.
What do we know about it?
We know it's analytic structure for each partial wave!

We do not know its EXPLICT analytic form!

EXPAND IT IN FASTLY CONVERGENT POWER SERIES OF PIETARINEN (${ }_{n} Z^{\prime \prime}$) FUNCTIONS WITH WELL KNOWN BRANCH-POINTS!

Original idea:

Convergence proven in:

1. S. Ciulli and J. Fischer in Nucl. Phys. 24, 465 (1961)
2. I. Ciulli, S. Ciulli, and J. Fisher, Nuovo Cimento 23, 1129 (1962).
3. S. Ciulli and J. Fischer in Nucl. Phys. 24, 465 (1961)
4. Detailed proof in I. Caprini and J. Fischer: "Expansion functions in perturbative QCD and the determination of $\alpha_{s} "$, Phys.Rev. D84 (2011) 054019,

Applied in πN scattering

 on the level of invariant1. E. Pietarinen, Nuovo Cimento Soc. Ital. Fis. 12A, 522 (1972).
2 Hnahlar - I andnlt Rnarnctain RIRI F" (108?)
i) Fixed- t analysis

The analysis would be too complicated if one would insist on working with dispersion integrals. It is possible only by the use of Pietarinens expansion of the invariant amplitudes in terms of functions which have the correct analytic properties (Sect. A.6.3.4). The coefficients are determined from fits to the data, using the fixed-s solution as a constraint.

What is Pitarinen's expansion?

In principle, in mathematical language, it is " ... a conformal mapping which maps the physical sheet of the ω-plane onto the interior of the unit circle in the Z-plane..."

In practice this means:

If $F(\omega)$ is a general, unknown analytic function having a cut starting at $\omega=x_{P}$, then it can be represented in a power series of Pietarinen functions in the following way:

$$
\begin{array}{ll}
F(\omega)=\sum_{n=0}^{N} c_{n} Z(\omega)^{n}, & \omega \in \mathbb{C} \\
Z(\omega)=\frac{\alpha-\sqrt{x_{P}-\omega}}{\alpha+\sqrt{x_{P}-\omega}}, \quad c_{n}, x_{P}, \alpha \in \mathbb{R} \tag{3}
\end{array}
$$

with the α and c_{n} being tuning parameter and coefficients of Pietarinen function $Z(\omega)$ respectively.

Or in another words, Pietarinen functions $Z(\omega)$ are a complet set of functions for an arbitrary function $F(\omega)$ which HAS A BRANCH POINT AT XP!

Observe:
Pietarinen functions do not form a complete set of functions for any function, but only for the function having a well defined branch point.

Illustration:

$$
\text { Powes series for } Z(\omega)=\frac{3.3-\sqrt{2-\omega}}{3.3+\sqrt{2-\omega}}
$$

$Z(\omega)$

$Z(\omega)^{3}$

Important!

A resonance CANNOT be well described by Pietarinen series.

$$
\text { BW }\left[s_{-}\right]:=r 1 /\left(\mathrm{M} 1-s-\text { i } \frac{\Gamma 1}{2}\right)
$$

$$
\begin{aligned}
& \mathrm{ZI}\left[x_{-}\right]:=(\alpha-\sqrt{ }(x P-x)) /(\alpha+\sqrt{(x P-x)}) ; \\
& W I\left[x_{-}\right]:=(\beta-\sqrt{ }(x Q-x)) /(\beta+\sqrt{(x Q-x))} ;
\end{aligned}
$$

FPietfit $\left[x_{n}\right]:=c 0 * Z I[x]^{0}+c 1 * Z I[x]^{1}+c 2 * Z I[x]^{2}+c 3 * Z I[x]^{3}+c 4 * Z I[x]^{4}+$ $\mathrm{c} 5 * \mathrm{ZI}[\mathrm{x}]^{5}-\mathrm{d} 0 * \mathrm{WI}[\mathrm{x}]^{0}-\mathrm{d} 1 * \mathrm{WI}[\mathrm{x}]^{1}-\mathrm{d} 2 * \mathrm{WI}[\mathrm{x}]^{2}-\mathrm{d} 3 * \mathrm{WI}[\mathrm{x}]^{3}-\mathrm{d} 4 * \mathrm{WI}[\mathrm{x}]^{4}-$ d5 *WI $[x]^{5}$; $x P \rightarrow-4.93028, x Q \rightarrow 1.09731$

Courtesy of Lothar Tiator

Finally, the area of convergence for Laurent expansion of P11 partial wave

2. Unitarity

Elestic unitarity is introduced via penalty function

$$
\left.\chi^{2}=\sum_{j=1}^{N_{p t s}}\left|T^{i n p}\left(\omega_{j}\right)-T\left(\omega_{j}\right)\right|^{2} / \mathrm{w}_{j}^{2}+\sum_{j=1}^{3} \lambda^{j} \chi_{P e n}^{j}+\beta \sum_{\mathrm{j}=1}^{\mathrm{N}_{\mathrm{pts}}^{\text {el }}}\left(1-\mathbf{S}\left(\omega_{\mathrm{j}}\right)\right) \mathbf{S}\left(\omega_{\mathrm{j}}\right)^{\dagger}\right)
$$

Unitarity test

The model

We use Mittag-Leffleur decomposition of „analyzed" function:

$$
T(\omega)=\sum_{i=1}^{k} \frac{a_{-1}^{(i)}}{\omega_{i}-\omega}+B^{L}(\omega)
$$

k-simple poles
 of analyzed fur
We know analytic properties (number and position of cuts)

ONE
Pietarinen power series per cut

$$
B^{L}(\omega)=\sum_{n=0}^{M} c_{n} Z(\omega)^{n}+\sum_{n=0}^{N} d_{n} W(\omega)^{n}+\cdots
$$

$$
Z(\omega)=\frac{\alpha-\sqrt{x_{P}-\omega}}{\alpha+\sqrt{x_{P}-\omega}} ; \quad W(\omega)=\frac{\beta-\sqrt{x_{Q}-\omega}}{\beta+\sqrt{x_{Q}-\omega}}+\cdots
$$

$$
a_{-1}^{(i)}, \omega_{i}, \omega \in \mathbb{C}
$$

$$
c_{n}, x_{P}, d_{n}, x_{Q}, \alpha, \beta \ldots \in \mathbb{R}
$$

$$
\begin{equation*}
\text { and } k, M, N \ldots \in \mathbb{N} . \tag{4}
\end{equation*}
$$

Method has problems, and the one of them definitely is:
There is a lot of cuts, so it is difficult to imagine that we shall be able to represent each cut with one Pietarinen series (too many possibly interfering terms).
Answer:
We shall use „effective" cuts to represent dominant effects.
We use three Pietarinen series:

- One to represent subthreshold, unphysical contributions
- Two in physical region to represent all inelastic channel openings

Strategy of choosing branchpoint positions is extremely important and will be discussed later

$$
\begin{aligned}
& \text { Advantage: } \\
& \text { The method is „self-checking"! } \\
& \text { It might not work. } \\
& \text { But, if it works, and if we obtain a good } X^{2} \text {, then we have obtained } \\
& \text { AN ANALYTIC FUNCTION WITH WELL KNOWN POLES AND CUTS WHICH } \\
& \text { DEFINITELY DESCRIBES THE INPUT! }
\end{aligned}
$$

So, if we have disagreements with other methods, then we are looking at two different analytic functions which are almost identical on a discrete set, so we may discuss the general stability of the problem.

However, our solution definitely IS A SOLUTION!

1. We may analyze various kinds of inputs
a. Theoretical curves coming from ANY model but also
b. Information coming directly from experiment (partial wave data)

Observe: Partial wave data are much more convenient to analyze!

To fit „theoretical input" we have to "guess" both: pole position AND exact analyticity structure of the background imposed by the analyzed model

To fit „experimental input" we have to "guess" only: pole position AND the simplest analyticity structure of the background as no information about functional type is imposed

Does it work?

Testing is a very simple procedure. It comes to:

DdAWMiswork
a. Testing on a toy model: arXìv nucl-th 1212.1295
b. Testing and application on realistic amplitudes
i. $\quad \pi N$ elastic scattering
a. ED PW amplitudes (some solutions from GWU/SAID)
b. ED PW amplitudes (some solutions from Dubna-MainzTaìpei)
ii. Photo - and electroproduction on nucleon
a. ED multipoles (all solutions from MAID and SAID)
b. SES multiknes (ait soletton:z from MAID and SAID)

a. Toy model

We have constructed a toy model using two poles and two cuts,

 used it to construct the input data set, attributed error bars of 5%, and tried to use L+P method to extract pole parameters under different conditions.$$
\begin{align*}
T^{t y}(\omega) & =\sum_{i=1}^{2} \frac{r_{i}^{t y}+\imath g_{i}^{t y}}{M_{i}^{t y}-\omega-\imath W_{i}^{t y}}+ \tag{5}\\
& +C_{1} \Phi(\omega, 0.25)+C_{2} \Phi(\omega, 1 .)+B^{t y}(\omega), \\
\Phi(\omega, a) & =\frac{\sqrt{\omega(-4 a+\omega)}}{2 \pi \omega} \ln \frac{2 a-\omega-\sqrt{\omega(-4 a+\omega)}}{2 a} \\
B^{t y}(\omega) & =B_{1} \frac{10 .}{-10 .-\omega-\imath 5 .}+B_{2} \frac{10 .}{-6 .-\omega-\imath 4 .},
\end{align*}
$$

$$
\begin{gathered}
\Phi(x, a)=\frac{x-x_{0}}{\pi} \int_{x_{0}}^{\infty} \frac{\Re e\left(x^{\prime}, a\right)}{\left(x^{\prime}-x\right)\left(x^{\prime}-x_{0}\right)} d x^{\prime} \\
\text { where } \\
\Re e(x, a)=\sqrt{x^{2}-4 a x} / 2 x \\
\text { cut is at } \quad x_{0}=4 a
\end{gathered}
$$

where

$$
r_{i}^{t y}, g_{i}^{t y}, M_{i}^{t y}, W_{i}^{t y} \in \mathbb{R}
$$

$$
\Gamma_{i}=-2 W_{i}
$$

r_{1}	g_{1}	M_{1}	Γ_{1}	r_{2}	g_{2}	M_{2}	Γ_{2}
0.1	0.09	1.65	0.165	0.09	0.06	2.25	0.2

$B_{1}=1, B_{2}=1$ GLI 2013/BLED 2015
$B_{1}=-1, B_{2}=-1$

C_{1}		B_{1}	B_{2}	r_{1}	g_{1}	M_{1}	Γ_{1}	r_{2}	g_{2}	M_{2}	Γ_{2}	α	x_{P}	N_{1}	β	x_{Q}	N_{2}			N_{3}	$10^{2} \chi_{R}^{2}$
Toy-model																					
				0.1	0.09	1.65	0.165	0.09	0.06	2.25	0.2										
Fitted results																					
Strategy a.																					
1	0	0	0	0.100	0.089	1.649	0.165	0.090	0.060	2.249	0.200	2.48	0.97	5							0.03
0	1	0	0	0.099	0.090	1.650	0.165	0.090	0.060	2.249	0.199	3.97	3.97	5							0.01
0	0	1	1	0.098	0.091	1.650	0.165	0.090	0.060	2.250	0.200	1.19	-14.94	7							0.2
0	0	-1	-1	0.099	0.089	1.649	0.1649	0.089	0.059	2.249	0.199	0.99	-9.63	7							0.01
1	0	1	1	0.103	0.100	1.653	0.171	0.101	0.067	2.249	0.221	0.71	-0.23	11							28
1	0	1	1	0.099	0.090	1.650	0.164	0.089	0.060	2.250	0.199	-2.04	-17.58	5	4.27	0.97	5				0.28
1	0	-1	-1	0.097	0.087	1.651	0.161	0.090	0.060	2.250	0.201	0.90	-0.39	20							22.0
1	0	-1	-1	0.099	0.089	1.649	0.164	0.090	0.059	2.249	0.199	2.96	-8.97	6	1.56	0.97	6				1.00
0	1	1	1	0.107	0.088	1.646	0.166	0.093	0.048	2.239	0.197	2.06	-0.89	10							114.79
0	1	1	1	0.099	0.090	1.650	0.165	0.090	0.060	2.250	0.200	1.94	-16.33	5	6.42	3.97	5				0.02
0	1	-1	-1	0.090	0.086	1.651	0.156	0.095	0.058	2.248	0.202	0.969	-0.37	12							238.38
0	1	-1	-1	0.099	0.090	1.650	0.165	0.090	0.060	2.250	0.200	0.81	-7.89	8	1.24	3.97	8				0.06
1	1	1	1	0.085	0.102	1.663	0.171	0.087	0.075	2.262	0.216	1.09	-2.64	10							328.19
1	1	1	1	0.098	0.086	1.650	0.161	0.095	0.058	2.247	0.199	0.44	-0.47	9	1.95	3.97	8				70.37
1	1	1	1	0.099	0.090	1.650	0.164	0.089	0.061	2.251	0.200	4.19	-22.99	5	2.22	3.98	5	1.67	0.97	3	0.24
1	1	-1	-1	0.090	0.105	1.657	0.182	0.078	0.061	2.260	0.189	1.38	-3.12	10							467.54
1	1	-1	-1	0.095	0.098	1.654	0.173	0.086	0.061	2.254	0.198	0.61	-0.20	9	25.91	3.98	8				60.94
1	1	-1	-1	0.100	0.090	1.650	0.165	0.090	0.060	2.250	0.200	1.85	-6.25	3	16.36	3.97	3	1.32	0.98	3	0.72

b. Testing on realistic amplitude

- mN elastic
- GWUISAID FA02
- GWUISAID SP06
- GWU/SAID WI08
- DMT
- Photoproduction
- GWU/SAID ZN11 ED

Quality of the fit

Fa02

mN elastic scattering SAID FA02 ED

CAMı

Sp06

mN elastic scattering SAID SP06 ED

$10001200140016001800120002200 \quad 2400$

ω［MeV］

ω［MeV］

CAMO
πN elastic scattering DMT

DMT

$N(1860)$ POLE POSITION

$N(1860)$ ELASTIC POLE RESIDUE
MODULUS $|r|$

Photoproduction

GWU/SAID Zn11 ED solution

FIG. 1: L+P fit to GWU/SAID ZN11 ED solutions.

TABLE I: Pole positions in MeV and residues of multipoles as moduli in $\mathrm{mfm} \cdot \mathrm{GeV}$ and phases in degrees. The results from L+P expansion are given for GW/SAID ZN11 energy dependent (ED), and ZN11 a.c. shows the result of analytical continuation into the complex region.

| Multipole | Source | Resonance | $\operatorname{Re} W_{p}$ | $-2 \operatorname{Im} W_{p}$ | \|residue| | θ | Resonance | $\operatorname{Re} W_{p}$ | $-2 \operatorname{Im} W_{p}$ | \|residue| | θ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $S_{11}\left({ }_{p} E_{0+}\right)$ | ZN11 ED | $N(1535) 1 / 2^{-}$ | 1506 | 90 | 0.203 | -7° | $N(1650) 1 / 2^{-}$ | 1648 | 88 | 0.128 | -51° |
| | ZN11 a.c. | | 1502 | 94 | 0.25 | -3° | | 1648 | 80 | 0.100 | -50° |
| $P_{11}\left({ }_{p} M_{1-}\right)$ | ZN11 ED | $N(1440) 1 / 2^{+}$ | 1363 | 173 | 0.353 | -68° | | | | | |
| | ZN11 a.c. | | 1362 | 164 | 0.34 | -84° | | | | | |
| $P_{33}\left({ }_{p} E_{1+}\right)$ | ZN11 ED | $\Delta(1232) 3 / 2^{+}$ | 1210 | 98 | 0.182 | -150° | $\Delta(1600) 3 / 2^{+}$ | 1494 | 444 | 0.281 | 139° |
| | ZN11 a.c. | | 1210 | 98 | 0.18 | -149° | | 1457 | 400 | 0.146 | 80° |
| $P_{33}\left({ }_{p} M_{1+}\right)$ | ZN11 ED | $\Delta(1232) 3 / 2^{+}$ | 1211 | 99 | 2.969 | -26° | | | | | |
| | ZN11 a.c. | | 1210 | 98 | 2.98 | -28° | | | | | |
| $D_{13}\left(p E_{2-}\right)$ | ZN11 ED | $N(1520) 3 / 2^{-}$ | 1516 | 112 | 0.427 | 12° | | | | | |
| | ZN11 a.c. | | 1515 | 112 | 0.440 | 11° | | | | | |
| $D_{33}\left({ }_{p} E_{2-}\right)$ | ZN11 ED | $\Delta(1700) 3 / 2^{-}$ | 1634 | 253 | 0.721 | -171° | | | | | |
| | ZN11 a.c. | | 1632 | 252 | 0.719 | -174° | | | | | |
| $F_{15}\left({ }_{p} E_{3-}\right)$ | ZN11 ED | $N(1680) 5 / 2^{+}$ | 1673 | 115 | 0.169 | 1° | $N(2000) 5 / 2^{+}$ | 1792 | 202 | 0.033 | -53° |
| | ZN11 a.c. | | 1673 | 114 | 0.169 | 8° | | 188\% | 1×9 | 0.126 | -58° |
| $F_{37}\left({ }_{p} M_{3+}\right)$ | ZN11 ED | $\Delta(1950) 7 / 2^{+}$ | 1876 | 227 | 0.255 | -16° | | 1785 | 244 | | |
| | ZN11 a.c. | | 1876 | 226 | | ? ${ }^{\circ}$ | | | | | |

Error analysis

The only problem in the model are thresholds. Their number is definitely at this moment insufficient, so we must propose a stretegy.

Namely, if we fail to reproduce background exactly (and that we certainly do as soon as number of thresholds is insufficient), the pole terms try to compensate for the approximation made.

We propose two strategies:

1. To fix the pole at the values expected to dominate for a chosen channel
2. To allow poles to vary as a fitting parameter and allow the fit to find optimal choice of two effective thresholds which will replace the exact values

In practice this looks like that:

Option 1:

Example of the error estimate:

$P_{33}\left(M_{1+}\right)$ Threshold positions
Red color - Results obtained with variable thresholds
Blue color - Results obtained with fixed physical thresholds

$P_{33}\left(M_{1+}+\left(\frac{3}{2}\right)\right)$		$R e$	$-2 I m$	$\begin{array}{ll} (R e, I m) \\ \left(\left\|r_{1}\right\|, \theta_{1}\right) & {[\mathrm{mfm}]} \\ \hline \end{array}$	χ_{R}^{2}	${ }^{x} P$	${ }^{x} Q$	${ }^{x} R$
sn11	Sol1	1210	102	$\begin{gathered} (2.737,-1.505) \\ (3.123,-29) \\ \hline \end{gathered}$	0.0014	86	1151	1319
	Sol2	1211	99	$\begin{gathered} (2.633,-1.337) \\ (2.953,-27) \\ \hline \end{gathered}$	0.006	76	1166	1294
	Sol3	1212	98	$\begin{gathered} (2.600,-1.208) \\ (2.867,-25) \\ \hline \end{gathered}$	0.008	-4571	1077	1215
	Sol4	1211	102	$\begin{gathered} (2.760,-1.432) \\ (3.109,-27) \\ \hline \end{gathered}$	0.006	-489	1077	1371
Our estimate		1210.51 ± 0.39	101.15 ± 0					
$\begin{gathered} (2.711 \pm 0.03,-1.439 \pm 0.055) \\ (3.069 \pm 0.071,-28 . \pm 0.18) \end{gathered}$								
$\bar{x}=\frac{\sum_{i=1}^{n} x_{i} w_{i}}{\sum_{i=1}^{n} w_{i}} ; w_{i}=\frac{\chi_{m i n}^{2}}{\chi_{i}^{2}} ; w_{i}=\frac{1}{\sigma_{i}^{2}} ; \sigma_{\bar{x}}^{2}=\frac{1}{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}} \frac{1}{(n-1)} \sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{\sigma_{i}^{2}}$								

We used weighted average.

Conclusion

The L+P method defined as:

$$
\begin{align*}
T(\omega)= & \sum_{i=1}^{k} \frac{a_{-1}^{(i)}}{\omega_{i}-\omega}+B^{L}(\omega) \\
B^{L}(\omega)= & \sum_{n=0}^{M} c_{n} Z(\omega)^{n}+\sum_{n=0}^{N} d_{n} W(\omega)^{n}+\cdots \\
Z(\omega)= & \frac{\alpha-\sqrt{x_{P}-\omega}}{\alpha+\sqrt{x_{P}-\omega}} ; \quad W(\omega)=\frac{\beta-\sqrt{x_{Q}-\omega}}{\beta+\sqrt{x_{Q}-\omega}}+\cdots \\
& a_{-1}^{(i)}, \omega_{i}, \omega \in \mathbb{C} \\
& c_{n}, x_{P}, d_{n}, x_{Q}, \alpha, \beta \ldots \in \mathbb{R} \\
& \text { and } k, M, N \ldots \in \mathbb{N} \tag{4}
\end{align*}
$$

Camogli 2013 / Bled 2015

World recognition

Figure 2: Transverse and scalar (longitudinal) helicity amplitudes for $\gamma p \rightarrow N(1440) 1 / 2^{+}$ (top), $\gamma p \rightarrow N(1520) 3 / 2^{-}$(center), and $\gamma p \rightarrow$ $N(1535) 1 / 2^{-}$(bottom) as extracted from the JLab/CLAS data in $n \pi^{+}$production (full circles), in $p \pi^{+} \pi^{-}$(open triangles), combined single and double pion production (open squares). The solid triangle is the PDG 2013 value at $Q^{2}=0$. The open boxes are the model uncertainties of the full circles. The figures are kindly provided by V. Burkert, JLab.
$A_{1 / 2}$ is small at the photon point, increases rapidly with Q^{2} and then falls off with $\sim Q^{-3}$. Quantitative agreement with the data is, however, achieved only when meson cloud effects are included.

At high Q^{2}, both amplitudes for $N(1440) 1 / 2^{+}$are qualitatively described by light front quark models [22]: at short distances the resonance behaves as expected from a radial excitation of the nucleon. On the other hand, $A_{1 / 2}$ changes sign at about $0.6 \mathrm{GeV}^{2}$. This remarkable behavior has not been observed before for any nucleon form factor or transition amplitude. Obviously, an important change in the structure occurs when the resonance is probed as a function of Q^{2}.

The Q^{2} dependence of $A_{1 / 2}$ of the $N(1535) 1 / 2^{-}$resonance exhibits the expected $\sim Q^{-3}$ dependence, except for small Q^{2} values where meson cloud effects set in.

VII. Partial wave analyses

Several PWA groups are now actively involved in the analysis of the new data. The GWU group maintains a nearly complete database covering reactions from πN and $K N$ elastic scattering to $\gamma N \rightarrow N \pi, N \eta$, and $N \eta^{\prime}$. It is presently the only group determining πN elastic amplitudes from scattering data in sliced energy bins. Given the high-precision of photoproduction data already or soon to be collected, the spectrum of N and Δ resonances will in the near future be better known.

Fits to the data are performed by various groups with the aim to understand the reaction dynamics and to identify N and Δ resonances. For practical reasons, approximations have to be made. We mention several analyses here: (1) The Mainz unitary isobar model [23] focusses on the correct treatment of the low-energy domain. Resonances are added to the unitary amplitude as a sum of Breit-Wigner amplitudes. This model also obtains resonance transition form factors and helicity amplitudes from electroproduction [19]. (2) For $N \pi$ electroproduction, the Yerevan/JLab group uses both the unitary isobar model and the dispersion relation approach developed in [22]. A phenomenological model was developed to extract resonance couplings and partial decay widths from exclusive $\pi^{+} \pi^{-} p$ electroproduction [21]. (3) Multichannel analyses using K-matrix parameterizations derive background terms from a chiral Lagrangian - providing a microscopical description of the background - (Giessen $[24,25]$) or from phenomenology (Bonn-Gatchina [26]) . (4.) Several groups (EBAC-Jlab [27,28], ANL-Osaka [29], Dubna-Mainz-Taipeh [30], Bonn-Jülich [31,32,33], Valencia [34]) use dynamical reaction models, driven by chiral Lagrangians, which take dispersive parts of intermediate states into account. Several other groups have made important contributions. The Giessen group pioneered multichannel analyses of large data sets on pion- and photo-induced reactions $[24,25]$. The Bonn-Gatchina group included recent high-statistics data and reported systematic searches for new baryon resonances in all relevant partial waves. A summary of their results can be found in Ref. [26].

References

1. G. Höhler, Pion-Nucleon Scattering, Landolt-Börnstein Vol. I/9b2 (1983), ed. H. Schopper, Springer Verlag.
2. R.E. Cutkosky et al., Baryon 1980, IV International Conference on Baryon Resonances, Toronto, ed. N. Isgur, p. 19.
3. R.A. Arndt et al., Phys. Rev. C74, 045205 (2006).
4. Hadron 2011: 14th International Conference on Hadron Spectroscopy, München, Germany, June, 13 - 17, 2011, published in eConf.
5. NSTAR 2013: 9th International Workshop on the Physics of Excited Nucleons, 27-30 May 2013, Peñiscola, Spain.
6. E. Klempt and J.M. Richard, Rev. Mod. Phys. 82, 1095 (2010).
7. V. Credé and W. Roberts, Rept. Prog. Phys. 76, 076301 (2013).
8. M. Roos et al., Phys. Lett. B111, 1 (1982).
9. A. Svarc et al., Phys. Rev. C88, 035206 (2013).
10. R.H. Dalitz and R.G. Moorhouse, Proc. Roy. Soc. Lond. A318, 279 (1970).
11. C. G. Fasano et al., Phys. Rev. C46, 2430 (1992).
12. G.F. Chew et al., Phys. Rev. 106, 1345 (1957).
13. R. L. Workman, L. Tiator, and A. Sarantsev, Phys. Rev. C87, 068201 (2013).
14. N. Suzuki, T. Sato, and T. -S. H. Lee, Phys. Rev. C82, 045206 (2010).
A. Švarc and L. Tiator

Publication

