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Motivation and justification
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Poles are finally established as  the ultimate resonance criterion

1. Conclusions of ATHOS 2012, ATHOS2013

2. Recent change in PDG attitude
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Immediate problem:

It is a common knowledge how to extract Breit-Wigner 
parameters from experimental data,

However, it is rather obscure how to do it with poles
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We know how to extract Breit-Wigner parameters from experiment 
because they are  defined on the real axes.

(see Camogli Michel)

But, how do we extract pole parameters from experiment because 
we have to go to the complex energy plane?
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The usual answer was:

1. Do it globally

One first has to make a model which fits the data, SOLVE 
IT, and obtain an explicit analytic function in the full 
complex energy plane. Second, one has to look for the 
complex poles of the obtained analytic functions. 

2. Do it locally

Speed plot, expansions in power series, etc
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Taylor expansion
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Regularization method
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In both cases we have   n-TH DERIVATIVE of the function

PROBLEMS  for local solutions ! 
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Direct problems for global solutions:

• Many models
• Complicated and different analytic structure
• Elaborated method for solving the problem
• SINGLE USER RESULTS
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In Camogli 2012, during „coffee-break conversation” I have
claimed that extracting poles from theoretical and even from
experimental data should in principle be possible, and I have
promised to try to propose a simple method.

Now I am fulfilling this promise.  
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Is it possible to create universal approach, usable for everyone, and 
above all REPRODUCIBLE?

I  have tryed to do it starting from very general principles:
1. Analyticity
2. Unitarity

Idea:                           TRADING ADVANTAGES

GLOBALITY  FOR SIMPLICITY
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If you create a model, the advantage is that your solution is
absolutely global, valid in the full complex energy plane (all
Rieman sheets). The drawback is that the solution is complicated,
pole positions are usually energy dependent otherwise you
cannot ensure simple physical requirements like absence of the
poles on the first, physical Riemann sheet, Schwartz reflection
principle, etc. It is complicated and demanding to solve it.

THEORETICAL MODELS

WE PROPOSE

Construct an analytic function NOT in the full complex energy 
plane, but CLOSE to the real axes in the area of dominant 
nucleon resonances, which is fitting the data by using 

LAURENT EXPANSION.
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Why Laurent’s decomposition?

• It is a unique representation of the  complex analytic function 
on  a dense set in terms of pole parts and regular background

• It explicitly seperates pole terms from regular part
• It has constant pole parameters
• It  is not a representation in the full complex energy plane, but 

has its well defined area of convergence

IMPORTANT  TO UNDERSTAND:

It is not an expansion in pole positions with constant coefficients 
(as some referees reproached), because it is defined only in a part 
of the complex energy plane. 
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Expansion of the T-matrix in terms of constant coefficients 

cannot be valid in principle.

Namely,  poles with constant coefficients have poles on ALL 
physical sheets, and that violates common sense because only 
bound states are allowed to be located on the physical sheet. 
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The only way how to accomodate
both, requirements of absence of
poles on the physical sheet, and
Schwartz principle requires that
pole positions become energy
dependent:

However, even this function has its Laurent decomposition

But it is valid 
only in the part 
of the complex 
energy plane
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1.  Analyticity 

Analyticity is introduced via generalized Laurent’s decomposition
(Mittag-Leffler  theorem)
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Assumption: 
• We are working with first order poles so all negative powers 

in Laurent’s expansion lower than 
n< -1 

are suppressed

Now, we have two parts¸of Laurent’s decomposition:
1. Poles             
2. Regular part
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Idea:     TO MIMICK THE PROCEDURE FOR BREIT-WIGNER CASE 

Bw: 

With Laurent’s decompositions for simple poles

where
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The problem is how to determine regular function B(w).  

What do we know about it?

�

We know it’s analytic structure for each partial wave!

We do not know its EXPLICT analytic form!



CAMOGLI 2013 / BLED 2015 23

So, instead of „guessing” its exact form by using  model assumptions we 

EXPAND IT IN  FASTLY CONVERGENT POWER SERIES OF              
PIETARINEN („Z”) FUNCTIONS WITH WELL KNOWN  BRANCH-POINTS!

Original idea: 1. S. Ciulli and J. Fischer in Nucl. Phys. 24, 465 (1961)
2. I. Ciulli, S. Ciulli, and J. Fisher, Nuovo Cimento 23, 1129

(1962).

Convergence 
proven in:

1. S. Ciulli and J. Fischer in Nucl. Phys. 24, 465 (1961)
2. Detailed proof in I. Caprini and J. Fischer: 

"Expansion functions in perturbative QCD and the 
determination of αs", Phys.Rev. D84 (2011) 054019,

Applied in πN scattering
on the level of invariant 

amplitudes 
PENALTY FUNCTION 

INTRODUCED

1. E. Pietarinen, Nuovo Cimento Soc. Ital. Fis. 
12A, 522 (1972).

2. Hoehler – Landolt Boernstein „BIBLE” (1983)
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What is Pitarinen’s expansion?

In principle, in mathematical language, it is ” ...a conformal mapping 
which maps the physical sheet of the ω-plane onto the interior of the 
unit circle in the Z-plane...”
In practice this means:
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Or in another words, Pietarinen functions Z(ω) are a complet set 
of functions for an arbitrary function F(ω) which                          

HAS A BRANCH POINT AT xP !

Observe:

Pietarinen functions do not form a complete set of functions for any 
function, but only for the function having a well defined branch point.
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Powes series for Z(ω) =

Illustration:
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Z(ω)2
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Z(ω)3
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Important!
A resonance CANNOT  be well described by Pietarinen series.
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Courtesy of Lothar Tiator



Camogli 2013 / Bled 2015 32

Finally, the area of convergence for Laurent 
expansion of P11 partial wave
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2. Unitarity 

Elestic unitarity is introduced via penalty function
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Unitarity test
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The model
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We use Mittag-Leffleur decomposition of „analyzed” function:

k - simple poles
regular background

We know analytic 
properties (number 

and position of cuts) 
of analyzed function 

ONE 
Pietarinen

power 
series
per cut
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Method has problems, and the one of them definitely is:
There is a lot of cuts,  so it is difficult to imagine that we 
shall be able to represent  each cut with one Pietarinen 
series (too many possibly interfering terms).

Answer:
We shall use  „effective” cuts to represent dominant effects.

We use three Pietarinen series:  
• One to represent subthreshold, unphysical 

contributions
• Two in physical region to represent all inelastic 

channel openings

Strategy of choosing branchpoint positions is extremely important  and will 
be discussed later
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Advantage:

The method is  „self-checking” !

It might not work. 
But, if it works, and if we obtain a good χ2, then we have obtained

AN ANALYTIC FUNCTION WITH WELL KNOWN POLES AND CUTS WHICH 
DEFINITELY DESCRIBES THE INPUT!

So, if we have disagreements with other methods, then we are looking 
at  two different analytic functions which are almost identical on a 
discrete set, so we may discuss the general stability of the problem.

However, our solution definitely IS A SOLUTION! 
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What can we do with this model?

1. We may analyze various kinds of inputs

a. Theoretical curves coming from ANY model
but also

b. Information coming directly from experiment                      
(partial wave data)

Observe:

To fit „theoretical input” we have to „guess”  both: 
pole position AND analyticity structure of the background 

imposed by the analyzed model  

To fit „experimental input” we have to „guess”  only: 
pole position AND analyticity structure of the 

background as no information about functional type is imposed 

Partial wave data are much more convenient to analyze!
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Does it work?

Testing is a very simple procedure.  It comes to:

WorksDoesn’t work

TESTING

a. Testing on a toy model: 

b. Testing and application on realistic amplitudes

i. πN elastic scattering
a. ED PW amplitudes (some solutions from GWU/SAID)
b. ED PW amplitudes (some solutions from Dubna-Mainz-

Taipei)
ii. Photo – and electroproduction on nucleon

a. ED multipoles (all solutions from MAID and SAID)
b. SES multipoles (all solutions from MAID and SAID)

arXiv  nucl-th 1212.1295

CAMOGLI 2013 / BLED 2015
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a. Toy model
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We have constructed a toy model using two poles and two cuts, 
used it to construct the input data set, attributed error bars of 5%, 
and tried to use L+P method to extract pole parameters under 
different conditions. 

C1, C2, B1, B2 = -1, 0, 1
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b. Testing on realistic amplitude

• πN elastic
• GWU/SAID FA02
• GWU/SAID SP06
• GWU/SAID WI08
• DMT 

• Photoproduction
• GWU/SAID  ZN11 ED
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Quality of the fit
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πN elastic scattering
SAID  FA02 ED 
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πN elastic scattering
SAID  SP06 ED 
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πN elastic scattering
DMT 
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Photoproduction
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GWU/SAID Zn11 ED solution
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XX
1785 244
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Error analysis
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The only problem in the model are thresholds. Their number is 
definitely at this moment insufficient, so we must propose a 
stretegy. 

Namely, if we fail to reproduce background exactly (and that we 
certainly do as soon as number of thresholds is insufficient), the 
pole terms try to compensate for the approximation made.

We propose two strategies:
1. To fix the pole at the values expected to dominate for a 

chosen channel
2. To allow poles to vary as a fitting parameter and allow 

the fit to find optimal choice of two effective thresholds 
which will replace the exact values
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In practice this looks like that:

Option 1:

Option 2:
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Example of the error estimate:

We used weighted average.
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Conclusion

The L+P method defined as:
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World recognition
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Figure 2: Transverse and scalar (longitudi-
nal) helicity amplitudes for γp → N(1440)1/2+

(top), γp → N(1520)3/2− (center), and γp →
N(1535)1/2− (bottom) as extracted from the
JLab/CLAS data in nπ+ production (full cir-
cles), in pπ+π− (open triangles), combined sin-
gle and double pion production (open squares).
The solid triangle is the PDG 2013 value at
Q2 = 0. The open boxes are the model uncer-
tainties of the full circles. The figures are kindly
provided by V. Burkert, JLab.

A1/2 is small at the photon point, increases rapidly with Q2

and then falls off with ∼ Q−3. Quantitative agreement with the

data is, however, achieved only when meson cloud effects are

included.

At high Q2, both amplitudes for N(1440)1/2+ are qual-

itatively described by light front quark models [22]: at short

distances the resonance behaves as expected from a radial

excitation of the nucleon. On the other hand, A1/2 changes

sign at about 0.6 GeV2. This remarkable behavior has not been

observed before for any nucleon form factor or transition am-

plitude. Obviously, an important change in the structure occurs

when the resonance is probed as a function of Q2.

The Q2 dependence of A1/2 of the N(1535)1/2− resonance

exhibits the expected ∼ Q−3 dependence, except for small Q2

values where meson cloud effects set in.

VII. Partial wave analyses

Several PWA groups are now actively involved in the anal-

ysis of the new data. The GWU group maintains a nearly

complete database covering reactions from πN and KN elastic

scattering to γN → Nπ, Nη, and Nη′. It is presently the only

group determining πN elastic amplitudes from scattering data

in sliced energy bins. Given the high-precision of photoproduc-

tion data already or soon to be collected, the spectrum of N

and Δ resonances will in the near future be better known.

Fits to the data are performed by various groups with the

aim to understand the reaction dynamics and to identify N

and Δ resonances. For practical reasons, approximations have

to be made. We mention several analyses here: (1) The Mainz

unitary isobar model [23] focusses on the correct treatment of

the low-energy domain. Resonances are added to the unitary

amplitude as a sum of Breit-Wigner amplitudes. This model

also obtains resonance transition form factors and helicity

amplitudes from electroproduction [19]. (2) For Nπ electro-

production, the Yerevan/JLab group uses both the unitary

isobar model and the dispersion relation approach developed

in [22]. A phenomenological model was developed to extract

resonance couplings and partial decay widths from exclusive

π+π−p electroproduction [21]. (3) Multichannel analyses us-

ing K-matrix parameterizations derive background terms from

a chiral Lagrangian - providing a microscopical description of

the background - (Giessen [24,25]) or from phenomenology

(Bonn-Gatchina [26]) . (4.) Several groups (EBAC-Jlab [27,28],

ANL-Osaka [29], Dubna-Mainz-Taipeh [30], Bonn-Jülich

[31,32,33], Valencia [34]) use dynamical reaction models,

driven by chiral Lagrangians, which take dispersive parts of in-

termediate states into account. Several other groups have made

important contributions. The Giessen group pioneered multi-

channel analyses of large data sets on pion- and photo-induced

reactions [24,25]. The Bonn-Gatchina group included recent

high-statistics data and reported systematic searches for new

baryon resonances in all relevant partial waves. A summary of

their results can be found in Ref. [26].
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