

Mini-Workshop Bled 2015 *Exploring Hadron Resonances* Bled (Slovenia), July 5-11, 2015

nMAID-2015: update with new data and new resonances

V. L. Kashevarov, M. Ostrick, L. Tiator

Outline

- ηMAID-2003
- Review of new experimental data
- Truncated PWA with Legendre expansion method
- η MAID-2015 for η and η' photoproduction
- Summary

ηMAID-2003

ηMAID is an isobar model for η-photo and electroproduction on nucleons, for more details see: W.-T. Chiang, S.N. Yang, L. Tiator, D. Drechsel, NP A700 (2002) 429.

Model ingredients:

- Born terms (very small contribution),
- $\rho\text{-}$ and $\omega\text{-meson}$ exchanges in the t-channel, which are described by $\rho\text{-}$ and ω poles.
- nucleon resonances parameterized with Breit-Wigner shapes.

Model variable parameters:

- Born terms: coupling η to nucleon $g^2{}_{\eta NN}$;
- vector mesons: hadronic vector g_v and tensor g_t couplings, dipole form factor Λ_v ;
- resonances: mass M_R , total width Γ_R at the resonance peak , branching ratio $\beta_{\eta N}$; photoexcitation helicity amplitudes $A_{1/2}, A_{3/2}$;
- total and partial widths have an energy dependence with an damping factor assumed to be the same for all resonances;
- relative sign between N* $\rightarrow ~\eta N$ and N* $\rightarrow ~\pi N$ couplings, $\zeta_{\eta N}$ = ±1.

Data set:

- total and differential cross sections of MAMI and GRAAL;
- photon asymmetry of GRAAL (E_{γ} <1.1 GeV);
- electroproduction cross sections of Jlab.

Reggeized model for η and η' photoprduction,

W.-T. Chiang, S.N. Yang, L. Tiator, M. Vanderhaeghen, D. Drechsel, PRC 68 (2003) 045202. Main difference: vector meson exchanges are described in terms of Regge trajectories. It should be important for high energies, W> 3GeV.

- dominance of S_{11}
- small background
- Important role of
 D₁₃ near threshold

Bonn-2009: V. Crede et al., PRC 80 (2009) 055202 Mainz-2010: E. F. McNicoll et al., PRC 82 (2010) 035208

New data sets

dσ/dΩ, A2MAMI:
dσ/dΩ, A2MAMI:
dσ/dΩ, A2MAMI:
dσ/dΩ, CBELSA/TAPS-09:
dσ/dΩ, CLAS-09:
T, A2MAMI-14:
F, A2MAMI-14:
Σ, GRAAL-07:
E, CLAS-15:

dσ/dΩ, A2MAMI: dσ/dΩ, CBELSA/TAPS-09: dσ/dΩ, CLAS-09: Σ

• Σ, GRAAL-15:

$\gamma \mathbf{p} \rightarrow \mathbf{\eta} \mathbf{p}$

$\gamma p \rightarrow \eta' p$

 $\begin{array}{ll} & E_{\gamma} = 1.45 - 1.57 \; \text{GeV}, \; 12 \times 10 & [Prakhov, preliminary] \\ 9: & E_{\gamma} = 1.53 - 2.48 \; \text{GeV}, \; 20 \times 10 & [PRC \; 80, \; 055202, \; 2009] \\ & E_{\gamma} = 1.51 - 3.43 \; \text{GeV}, \; 39 \times (13 - 18) \; [PRC \; 80, \; 045213, \; 2009] \\ & E_{\gamma} = 1.46 - 1.48 \; \text{GeV}, \; 2 \times 7 \; [Sandri \; \text{et al}, \; EPJA, \; \text{to be published}] \end{array}$

Differential cross section

black circles: A2MAMI (preliminary) red line: blue: green: black: magenta:

ηMAID-03, NP A700, 429 (2002) SAID GE09, PRC 82, 035208 (2010) BG2011-02, EPJA 47, 153 (2011) Giessen Model, PRC 87, 015201 (2013) Tryasuchev, EPJA 50, 120 (2014)

 $\gamma p \rightarrow \eta p$

Target asymmetry T

black circles: A2MAMI-14 (PRL 113, 102001, 2014)

magenta triangles: CBELSA-98 (PRL 81, 534, 1998) red line: blue: green: black: magenta:

ηMAID-03 (NP A700, 429, 2002)
SAID GE09 (PRC 82, 035208, 2010)
BG2011-02 (EPJA 47, 153, 2011)
Giessen Model (PRC 87, 015201, (2013)
Tryasuchev (EPJA 50, 120, 2014)

 $\gamma P \rightarrow \mathbf{J} P$

Beam-target asymmetry F

black circles: A2MAMI-14 (PRL 113, 102001, 2014)

red line: blue: green: black: magenta: ηMAID-03 (NP A700, 429, 2002) SAID GE09 (PRC 82, 035208, 2010) BG2011-02 (EPJA 47, 153, 2011) Giessen Model (PRC 87, 015201, (2013) Tryasuchev (EPJA 50, 120, 2014)

total cross section

solid blue: ηMAID-2003, dashed: Born+Rho+Omega, red: Born, dashed: Rho, dotted-dashed: Omega solid black: ηMAID-2003 Regg, dashed: Rho+Omega

 $\gamma p \rightarrow \eta p$

Excitation function, A2MAMI (preliminary)

 $\gamma p \rightarrow \eta p$

Excitation function, CBELSA/TAPS – 09

 $\gamma p \rightarrow \eta p$

Excitation function, CLAS – 09

Observables in Legendre series

The Legendre expansion can be formulated in terms of associated Legendre polynomials $\{P_{\ell}^{0}(x), P_{\ell}^{1}(x), P_{\ell}^{2}(x)\}$ with the following relations

$$P_{\ell}^{0}(\cos\theta) = P_{\ell}(\cos\theta),$$

$$P_{\ell}^{1}(\cos\theta) = -\sin\theta P_{\ell}^{'}(\cos\theta),$$

$$P_{\ell}^{2}(\cos\theta) = \sin^{2}\theta P_{\ell}^{''}(\cos\theta).$$

In particular we can find an expansion

$$\begin{split} O_i(W,\theta) &= \sum_{k=0}^{2\ell_{max}} A_k^i(W) \ P_k^0(\cos\theta), \text{ for } O_i = \{\sigma_0, \hat{E}\} \\ O_i(W,\theta) &= \sum_{k=1}^{2\ell_{max}} A_k^i(W) \ P_k^1(\cos\theta), \text{ for } O_i = \{\hat{T}, \hat{P}, \hat{F}, \hat{H}\} \\ O_i(W,\theta) &= \sum_{k=2}^{2\ell_{max}} A_k^i(W) \ P_k^2(\cos\theta), \text{ for } O_i = \{\hat{\Sigma}, \hat{G}\} \end{split}$$

Partial wave content of Legendre coefficients, $l_{max} = 3$

A_0	=SS	S + PP + SD + DD + PF + FF
A_1	=	SP + PD + SF + DF
A_2	=	PP + SD + DD + PF + FF
A_3	=	PD + SF + DF
A_4	=	DD + PF + FF
A_5	=	DF
A_6	=	FF

 $\gamma p \rightarrow \eta p$

black circles: CBELSA/TAPS-09,

red: Legendre fit, j_{max}=8

 $\cos\Theta_n^*$

 $\gamma \mathbf{b} \rightarrow \mathbf{J} \mathbf{b}$

Legendre fit results for T and F

j_{max}=6

Legendre coefficients in µb/sr units from fitting differential cross sections with jmax=10

red: A2MAMI preliminary data

black: CBELSA/TAPS-2009

blue: CLAS – 09

η*MAID-2015*

Main goals:

- expand ηMAID-2003 to higher energy
- improve description of polarization data
- add η' photoproduction

Main changes in nMAID-2003:

- included 12 additional resonances
- updated parameters of vector mesons
- updated data base for the fit: last data from A2MAMI, CLAS, and GRAAL for η and η' photoproduction

 $P_{13}(2040)^* P_{11}(2100)^*$

N(2600)11/2-*** N(2700)13/2+**

 $P_{11}(1440)^{****}$ $P_{11}(2300)^{**}$ $D_{15}(2570)^{**}$

Other resonances below 3000 MeV (PDG-2014)

 $F_{15}(1860)^{**}$ $D_{13}(1875)^{***}$ $P_{11}(1880)^{**}$ $S_{11}(1895)^{**}$

Additional resonances in nMAID-2015

 $F_{15}(1680)^{****}$ $D_{13}(1700)^{***}$ $P_{11}(1710)^{***}$ $P_{13}(1720)^{****}$

 $D_{13}(1520)^{****}$ $S_{11}(1535)^{****}$ $S_{11}(1650)^{****}$ $D_{15}(1675)^{****}$

Resonances in ηMAID-2003

ηMAID-2015

Vector meson exchanges in the t-channel

Parameters for vector mesons:

- electomagnetic couplings $\lambda_{\rho\eta\gamma}$, $\lambda_{\omega\eta\gamma}$ and $\lambda_{\rho\eta'\gamma}$, $\lambda_{\omega\eta'\gamma}$ (fixed) determined from corresponding radiative decay widths: $\Gamma_{\rho \to \eta\gamma}$ and $\Gamma_{\omega \to \eta\gamma}$ for η photoproduction, $\Gamma_{\eta' \to \rho\gamma}$ and $\Gamma_{\eta' \to \omega\gamma}$ for η' photoproduction
- cutoffs for dipole formfactor $\ \Lambda_{\rho} \ \mbox{and} \ \Lambda_{\omega}$

Parameter	MAID-03	MAIDregge-03	Laget-PRC72(2005)
$g_{ ho NN}$	2.4	2.4	0.92
$k_{ ho NN}$	6.1	3.7	6.1
$g_{\omega NN}$	16	9	17.9
$k_{\omega NN}$	0	0	0
$\Lambda_{ ho}$	1.34	-	-
Λ_ω	1.27	-	-

(variable)

Parameter [keV]	MAID-03	PDG-14
$\Gamma_{\rho \to \eta \gamma}$	36	50.6
$\Gamma_{\omega \to \eta \gamma}$	5.5	3.9
$\Gamma_{\eta\prime \to \rho\gamma}$	89	58
$\Gamma_{\eta' \to \omega \gamma}$	9.1	5.5

$\gamma p \rightarrow \mathbf{J} p$

ηMAIDregge-2003

black circles: DESY-70 (PL 33B, 236, 1970);

red circles: WLS-71 (PL 37B, 326, 1971); blue circles: CLAS-09;

- 1. magenta lines: only background with MAIDregge parameter set;
- 2. black solid: same as 1 with updated ρ , ω widths;
- 3. black dashed: same as 2 plus resonances;
- 4. blue: same as 2 with MAID-03 par. set;
- 5. red: same as 2 with Laget-05 par. set.

ηMAID-2015: fit procedure

Base model: MAID-03

Fixed parameters:

- updated electromagnetic couplings for the vector mesons;
- hadronic vector and tensor couplings for the vector mesons from Ref. Laget-05;
- branching ratios for hadronic decays of the resonances besides the investigated channel.

Variable parameters:

- hadronic pseudoscalar coupling for the born term contribution;
- cutoffs for the dipole formfactor Λ_{ρ} and Λ_{ω} ;
- for each resonance: mass M_R , total width Γ_R at the resonance peak , branching ratio $\beta_{\eta N}$ (or $\beta_{\eta' N}$), photoexcitation helicity amplitudes $A_{1/2}$ and $A_{3/2}$,

relative sign between N* $\rightarrow \eta N$ and N* $\rightarrow \pi N$ couplings, $\zeta_{\eta N} = \pm 1$;

- damping parameter for energy dependent total and partial widths, the same for all resonances;
- damping parameter for the electromagnetic form factor, the same for all resonances.

Fit strategy:

- as initial parameter set was used the last BnGa solution;
- as initial parameter limits were used parameter uncertainties from PDG-2014 or BnGa solution;
- on the first step $A_{1/2},\,A_{3/2}$ are fixed because of a strong correlation with $\beta_{\eta N}\,;$
- on the second step $\beta\eta N$ obtained on the first step are fixed, but $A_{1/2}$, $A_{3/2}$ are variable, and so on;
- after few iterations the initial limits are changed if necessary;
- fit for the η and η' channels was done independently.

nMAID-2015: total cross sections

solid blue: ηMAID-2003, solid black: ηMAID-2015, dashed: Born+Rho+Omega for ηMAID-2003 dashed: Born+Rho+Omega for ηMAID-2015

 $\gamma p \rightarrow \mathbf{j} p$

ηMAID-2015: differential cross sections

black circles: A2MAMI preliminary data

red: ηMAID-2015

ηMAID-2015: differential cross sections

black circles: A2MAMI preliminary

red line: ηMAID-2015

blue circles: GRAAL-07

red lines: nMAID-2015

green circles: CBELSA/TAPS-09

red line: η MAID-2015

New data and MAID-2003 Regge

solid black: ηMAID-2003 Regg, dashed: Rho, dot-dashed: Omega red lines: same as black lines but with Laget-05 parameter set

New data and MAID-2003 Regge

black lines: ηMAID-2003 Regg red lines: same as black lines but with Laget-05 parameter set

New data and MAID-2003 Regge

red lines: same as black lines but with Laget-05 parameter set

Excitation function

Red circles: A2MAMI (preliminary)

Black circles: CBELSA/TAPS - 09

 $\gamma p \rightarrow \eta' p$

Excitation function, CLAS – 09

 $\gamma p \rightarrow \eta' p$

Legendre fitting experimental data with different j_{max}

black circles: A2 MAMI preliminary data,

red lines: fit result

 $\gamma P \rightarrow \eta' P$

Legendre fitting experimental data with different j_{max}

black circles: CBELSA/TAPS-2009 data,

red lines: fit result

 $\gamma p \rightarrow \eta' p$

Legendre fitting experimental data with $j_{max} = 8$

black circles: CLAS-2009 data

red lines: fit result

Legendre fitting experimental data with different j_{max}

black circles: fit result for CLAS-2009 data

Legendre coefficients in µb/sr units from fitting differential cross sections

A2 MAMI preliminary data red circles: fit with j_{max}=4 CBELSA/TAPS-2009 black: fit with j_{max}=4

CLAS – 09 blue: fit with j_{max}=10

nMAID-2015: total cross section

Black lines:solid is full solution,dashed: background,dot-dashed: $\rho+\omega$,dotted: born termRed circles:A2MAMI,black circles:CBELSA/TAPS-09,blue circles:CLAS-09 from Legendre fit

MAID-2015 and near threshold data

closed circles: A2MAMI (preliminary);

open circles : GRAAL-15;

Red line: η MAID-2015

MAID-2015 and CLAS-09

black circles: CLAS-09

red line: nMAID-2015

Summary

- new experimental data for unpolarized and polarized observables for η and η' meson photoproduction reactions were obtained last years by A2@MAMI, CBELSA/TAPS, CLAS, and GRAAL Collaborations;
- most PWA predictions fail to give a consistent description of the new polarization data;
- Legendre decomposition of the new data shows the sensitivity to small partial-wave contributions and allows qualitative analyzing reactions;
- updated ηMAID-2015 good enough describes existing experimental data in all energy region;
- because we are far from "complete experiment" to get model independent description of the reactions, updated isobar model ηMAID-2015 could be contribute to further understanding reaction mechanism and excited nucleon spectra.

$Partcle \ J^P$	M_R [MeV]	$\Gamma^R_{tot}(M_R) \; [MeV]$	$\zeta_{\eta N}$	$\beta_{\eta N}$ [%]	$A_{1/2} \ [10^{-3} GeV^{-1/2}]$	$A_{3/2} \ [10^{-3} GeV^{-1/2}]$	model
$N(1520) \ 3/2^{-}$	1514	121	+1	0.14	-27	+102	MAID15
or $N(1520)D_{13}$	1517 ± 3	114 ± 5			-22 ± 4	$+131 \pm 10$	BnGa12
****	1515 ± 5	115^{+10}_{-15}		0.23 ± 0.04	-20 ± 5	$+140 \pm 10$	PDG14
	1520	120	+1	0.056	-52	+166	MAID03
	1520	120	+1	0.038	-24	+166	MAIDreg03
$N(1535) \ 1/2^-$	1521	159	+1	35	+121		MAID15
or $N(1535)S_{11}$	1519 ± 5	128 ± 14		33 ± 5	$+105 \pm 10$		BnGa12
****	1535 ± 10	150 ± 25		42 ± 10	$+115 \pm 15$		PDG14
	1541.1	190.5	+1	50	+118.5		MAID03
	1521.3	117.5	+1	50	+79.6		MAIDreg03
$N(1650) \ 1/2^-$	1636	103	-1	15	+43		MAID15
or $N(1650)S_{11}$	1651 ± 6	104 ± 10		18 ± 4	$+33\pm7$		BnGa12
****	1655^{+15}_{-10}	140 ± 30		5 - 15	$+45 \pm 10$		PDG14
	1637.5	113.8	-1	7.91	+68.4		MAID03
	1635	120	-1	16.3	+46		MAIDreg03
$N(1675) 5/2^-$	1678	180	-1	2.9	+15	+31	MAID15
or $N(1675)D_{15}$	1664 ± 5	152 ± 7			$+24\pm3$	$+25\pm7$	BnGa12
****	1675 ± 5	150^{+15}_{-20}		0 ± 0.7	$+19\pm8$	$+20\pm5$	PDG14
	1665.3	150	-1	17.42	+17.7	+24	MAID03
	1665	150	+1	0.685	+19	+15	MAIDreg03
$N(1680) \ 5/2^+$	1660	159	-1	0.13	-23	+118	MAID15
or $N(1680)F_{15}$	1689 ± 6	118 ± 6			-13 ± 3	$+135\pm6$	BnGa12
****	1685 ± 5	130 ± 10		0 ± 0.7	-15 ± 6	$+133 \pm 12$	PDG14
	1681.4	130	+1	0.06	-21	+124.8	MAID03
	1670	130	+1	0.003	-15	+133	MAIDreg03
$N(1700) \ 3/2^-$	1735	75	$^{-1}$	1	+12	-44	MAID15
or $N(1700)D_{13}$	1790 ± 40	390 ± 140			$+41 \pm 17$	-34 ± 13	BnGa12
***	1700 ± 50	150^{+100}_{-50}		0 ± 1	$+15\pm25$	-15 ± 25	PDG14
	1700	100	-1	0.3	-18	-2	MAID03
	1700	100	-1	0.025	-18	-2	MAIDreg03
$N(1710) \ 1/2^+$	1691	271	-1	0.3	+69		MAID15
or $N(1710)P_{11}$	1710 ± 20	200 ± 18		17 ± 10	$+52 \pm 15$		BnGa12
***	1710 ± 30	100^{+150}_{-50}		10 - 30	$+40 \pm 20$		PDG14
	1720.6	100	+1	25.84	+23.2		MAID03
	1700.8	100	-1	26	+9		MAIDreg03
$N(1720) \ 3/2^+$	1800	440	-1	2.4	+152	+68	MAID15
or $N(1720)P_{13}$	1690^{+70}_{-35}	420 ± 100		3 ± 2	$+110 \pm 45$	$+150\pm30$	BnGa12
****	1720^{+30}_{-20}	250^{+150}_{-100}		2.1 ± 1.4	$+100 \pm 20$		PDG14
	1720	150	+1	3.0	+18.0	-19.0	MAID03
	1720	150	-1	4.115	+18.0	-19.0	MAIDreg03

.

$Partcle \ J^P$	M_R [MeV]	$\Gamma^R_{tot}(M_R) \; [MeV]$	$\zeta_{\eta N}$	$\beta_{\eta N}$ [%]	$A_{1/2} \ [10^{-3} GeV^{-1/2}]$	$A_{3/2} \ [10^{-3} GeV^{-1/2}]$	model
$N(1860) 5/2^+$ or $N(1860)F_{15}$ **	$\begin{vmatrix} 1920 \\ 1860^{+120}_{-60} \\ 1860^{+100}_{-40} \end{vmatrix}$	$\frac{360}{270^{+140}_{-50}}$	+1	1.2	$+11\\-19\pm11$	$+80 \\ +48 \pm 18$	$MAID15 \\BnGa12 \\PDG14$
$N(1875) \ 3/2^{-}$ or $N(1875)D_{13}$ ***	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 220\\ 200\pm25 \end{array}$	-1	$3.3 \\ 5 \pm 2 \\ 1.2 \pm 1.8$	$-8 \\ +18 \pm 10$	$-48\\-9\pm5$	$MAID15 \\BnGa12 \\PDG14$
$N(1880) \ 1/2^+$ or $N(1880)P_{11}$ **	$\begin{vmatrix} 1905\\1870\pm35 \end{vmatrix}$	$\begin{array}{c} 160\\ 235\pm65\end{array}$	-1	$20 \\ 25^{+30}_{-20}$	-8 -13 ± 3 or +34 ± 11		$MAID15 \\BnGa12 \\PDG14$
$N(1895) \ 1/2^{-}$ or $N(1895)S_{11}$ **	$\begin{vmatrix} 1896 \\ 1895 \pm 15 \end{vmatrix}$	$\frac{106}{90^{+30}_{-15}}$	+1	$\begin{array}{c} 14\\ 21\pm +6\end{array}$	$-16\\-11\pm 6$		$MAID15 \\BnGa12 \\PDG14$
$N(1900) \ 3/2^+$ or $N(1900)P_{13}$ ***	$\begin{vmatrix} 1800\\ 1905 \pm 30\\ \approx 1900 \end{vmatrix}$	$740 \\ 250^{+120}_{-50} \\ \approx 250$	+1	$7 \\ 10 \pm 4 \\ \approx 12$	$+24 \\ +26 \pm 15$	$\begin{array}{c} -8 \\ -65 \pm 30 \end{array}$	$MAID15 \\BnGa12 \\PDG14$
$N(1990) 7/2^+$ or $N(1990)F_{17}$ **	$\begin{vmatrix} 1970(2092) \\ 2060 \pm 65 \\ \approx 1990 \end{vmatrix}$	300(285) $240^{\pm}50$	-1	0.013	$+96(+24) +40 \pm 12$	$+13(+77) +57 \pm 12$	$MAID15 \\BnGa12 \\PDG14$
$ \begin{array}{c} N(2000) \ 5/2^+ \\ \text{or} \ N(2000) F_{15} \\ ** \end{array} $	$\begin{vmatrix} 2248(2188) \\ 2090 \pm 120 \\ 2050 \pm 100 \end{vmatrix}$	$311(284) \\ 460 \pm 100$	+1	0.9 2.0 ± 2.0	+14(-1.8) $+32 \pm 14$	$+77(+72) +48 \pm 14$	$MAID15 \\BnGa12 \\PDG14$
$N(2060) 5/2^-$ or $N(2060)D_{15}$ **	$\begin{vmatrix} 1912(2134) \\ 2060 \pm 15 \\ \approx 2060 \end{vmatrix}$	570(493) 375 ± 25	+1	$\begin{array}{c} 4.6\\ 4\pm2 \end{array}$	$+28(+45) +67 \pm 15$	$-2.5(+98) +55 \pm 20$	$MAID15 \\BnGa12 \\PDG14$
$N(2150) \ 3/2^-$ or $N(2150)D_{13}$ **	$ \begin{array}{ } 2052(2093) \\ 2150 \pm 60 \end{array} $	260(224) 330 ± 45	+1	0.5	+247(+23) $+130 \pm 45$	$+44 + (+250) +150 \pm 55$	$MAID15 \\BnGa12 \\PDG14$
$N(2190) 7/2^{-}$ or $N(2190)G_{17}$ ****	$\begin{vmatrix} 2208(2147) \\ 2180 \pm 20 \\ 2190^{+10}_{-100} \end{vmatrix}$	500(504) 335 ± 40 500 ± 200	+1	$\begin{array}{c} 2\\ 0\pm 1 \end{array}$	$27(-50) -65 \pm 8$	+106(-1.6) $+35 \pm 17$	$MAID15 \\BnGa12 \\PDG14$
$N(2220) \ 9/2^+$ or $N(2220)H_{19}$ ****	$\begin{vmatrix} 2332(2284) \\ 2200 \pm 50 \\ 2250 \pm 50 \end{vmatrix}$	$\begin{array}{c} 345(540) \\ 480 \pm 60 \\ 400^{+100}_{-50} \end{array}$	-1	7.8	37(15) A < 10	-11(21) A < 10	$MAID15 \\BnGa12 \\PDG14$
$N(2250) 9/2^-$ or $N(2250)G_{19}$ ****	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 800(297) \\ 520 \pm 50 \\ 500^{+300}_{-170} \end{array}$	-1	4.3	+7.3(-32) A < 10	+1.8(20) A < 10	$MAID15 \\BnGa12 \\PDG14$

$\gamma P \rightarrow \eta' P$ MAID-2015: fit parameters

gEtaNN	gł	Rho1	gRho	2 gC)m1	gOm2	LamR	LamO
0.0044	С	.92	6.10	17	.90	0.00	0.94	1.10
1852.00	175.00	0.6071	-58.5289	-16.1568	D13(1	.875)		
1870.00	369.80	-0.0142	42.9101		P11(1	.880)		
1896.06	80.00	6.4531	-18.7773		S11(1	.895)		
1908.09	289.32	-0.1326	5.2474	-193.9637	P13(1	1900)		
2092.00	284.64	0.1569	24.0000	77.4992	F17(1	990)		
2188.49	284.47	1.8923	-1.7543	72.3619	F15(2	000)		
2134.00	492.99	0.1225	45.0002	97.9980	D15(2	2060)		
2093.74	223.60	0.0350	23.8704	471.2545	D13(2	2150)		
2147.16	504.46	-0.7297	-50.0263	-1.5989	G17(2	190)		
2284.00	539.00	5.7733	14.9495	20.9818	H19(2	220)		
2304.40	296.85	-1.0779	-32.6542	20.1285	G19(2	250)		

MAID-2015 predictions for CBELSA/TAPS data P Ls 0.3 E₇≡1375 MeV 10.2 CD 0.1 0.2 0.2 0.2 1675 MeV 1725 MeV 1425 MeV 1475 MeV 1525 MeV 1575 MeV 1625 MeV 1775 MeV 1825 MeV 🐝 1875 MeV 1925 MeV 2125 MeV 1975 MeV 2075 MeV 2175 MeV 2225 MeV 2275 MeV 2325 MeV 2375 MeV 2425 MeV 2475 MeV 2025 MeV . 2525 MeV 0.3 0.2 0.1 0 1-1 0 1-1 0 1-1 1-1 1-1 1-1 1-1 1-1

 $\cos\Theta_n^*$

black circles: CBELSA/TAPS-09, red lines: ηMAID-2015 blue circles: CBELSA/TAPS-15 (J. Hartmann: TPH, J. Müller: E, preliminary)

Black triangles: A2MAMI (preliminary); Blue circles: CBELSA/TAPS-09; magenta line: ηMAIDregge-2015 black lines: background contributions (solid: ρ and ω , dashed: ρ , dot-dashed: ω)

 $\gamma p \rightarrow \eta' p$

MAIDregge-2015 and CLAS-09

Black circles: CLAS-09 data;

red line: ηMAIDregge-2015

MAIDregge-2015: fit parameters

gEtaNN 0.0	gRho1 0.92	gRho2 6.1	gOm1 17.9	gOm2 0.0	LamR –	LamO –	
	М	G	Br.	A1/2	A3/2		
S11(1895):	1895.9	83.2	-9.96	-8.			
P13(1900):	1935.	370.	-0.46	40.	-88.7		
D15(2060):	2120.	350.	-0.46	55.	80.		
D13(2150):	2150.	330.	-0.14	130.	150.		

black circles: CBELSA/TAPS-09, red lines: ηMAIDregge-2015 blue circles: CBELSA/TAPS-15 (J. Hartmann: TPH, J. Müller: E, preliminary)