Prof. Dr. M. Lukáčová
Institute of Mathematics, JGU Mainz

Christmas Homework Numerics of PDE, WS 2014/15

Let $\Omega \subseteq \mathbb{R}^{2}$ be a bounded and simply connected domain and let \mathbb{T} be a triangulation of Ω. Furthermore let V_{h}^{H} be the approximation of the solution space using cubic HermiteElements and V_{h}^{L} the one using cubic Lagrange-Elements, respectively.
a) Show: $V_{h}^{H} \subset V_{h}^{L}$.
b) Calculate the dimensions $\operatorname{dim}\left(V_{h}^{H}\right)$ and $\operatorname{dim}\left(V_{h}^{L}\right)$.
c) Show: $\forall \mathbb{T}$ with $|\mathbb{T}| \geq 2: \operatorname{dim}\left(V_{h}^{H}\right)<\operatorname{dim}\left(V_{h}^{L}\right)$.

Hint: Use Euler's formula (see: http:// en. wikipedia. org/wiki/Euler_characteristic), here number of faces means for number of triangles
d) Explain why V_{h}^{L} has more DOFs.

Figure 1: Source: freechristmaswallpapers.net

