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Abstract. Three-dimensional (3-D) kinematical conservation laws (KCL) are equations of evo-
lution of a propagating surface Ωt in three space dimensions. We start with a brief review of the 3-D
KCL system and mention some of its properties relevant to this paper. The 3-D KCL, a system of
six conservation laws, is an underdetermined system to which we add an energy transport equation
for a small amplitude 3-D nonlinear wavefront propagating in a polytropic gas in a uniform state and
at rest. We call the enlarged system of 3-D KCL with the energy transport equation equations of
weakly nonlinear ray theory (WNLRT). We highlight some interesting properties of the eigenstruc-
ture of the equations of WNLRT, but the main aim of this paper is to test the numerical efficacy
of this system of seven conservation laws. We take several initial shapes for a nonlinear wavefront
with a suitable amplitude distribution on it and let it evolve according to the 3-D WNLRT. The 3-D
WNLRT is a weakly hyperbolic 7×7 system that is highly nonlinear. Here we use the staggered Lax–
Friedrichs and Nessyahu–Tadmor central schemes and have obtained some very interesting shapes of
the wavefronts. We find the 3-D KCL to be suitable for solving many complex problems for which
there presently seems to be no other method capable of giving such physically realistic features.
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1. Introduction. Propagation of a nonlinear wavefront or a shock front in three-
dimensional (3-D) (x1, x2, x3)-space R

3 is a very complex physical phenomenon. Both
fronts share a common property of possessing curves of discontinuities across which
the normal direction to the fronts and the amplitude distribution on them suffer dis-
continuities. These are discontinuities of the first kind, i.e., the limiting values of
the discontinuous functions, and their derivatives on a front as we approach a curve
of discontinuity from either side are finite. Such a discontinuity was first analyzed
by Whitham in 1957 [34] (see also [35]), who called it shock-shock, meaning shock
on a shock front. However, the theory of kinematical conservation laws shows that
a discontinuity of this type is geometric in nature and can arise on any propagating
surface Ωt, and hence it has been given the general name kink. In order to explain the
existence of a kink and study its formation and propagation, we need the governing
equations in the form of a system of physically realistic conservation laws. In this
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paper we derive such conservation laws for a surface Ωt evolving in R
3 in a specially

defined ray coordinate system. Since they are derived purely on geometrical consider-
ation, they have been called the kinematical conservation laws (KCL) [3, 27]. When a
discontinuous solution of the KCL system in the ray coordinates has a shock satisfying
Rankine–Hugoniot conditions, the image of the shock in x-space R

3 is a kink.
Before we start any discussion, we assume that all variables, both dependent and

independent, used in this paper are nondimensional, with the exception of the first
paragraph in section 3.

The KCL governing the evolution of a moving curve Ωt in two space dimensions
(x1, x2) were first derived by Morton, Prasad, and Ravindran [25] in 1992, and the
kink (in this case, a point on Ωt) phenomenon is well understood [27]. We call this
system of KCL a two-dimensional (2-D) KCL. Prasad and his collaborators have used
the 2-D KCL to solve many interesting problems and have obtained many new results
[5, 6, 7, 8, 24, 29].

The KCL for a surface evolving in three space dimensions (called 3-D KCL), a sys-
tem of six conservation laws, was first obtained by Giles, Prasad, and Ravindran [17].
Later on the analysis of 3-D KCL was completed by Arun and Prasad [3], which we
discuss briefly in the next section.

The aim of this paper is to demonstrate the applicability of the theory of 3-D KCL
showing successive positions and interesting shapes of a nonlinear wavefront obtained
by numerical solution of the KCL system along with a closure relation representing
the conservation of energy in a ray tube. We call KCL with this closure relation
equations of weakly nonlinear ray theory (WNLRT), which we shall elaborate upon
in section 3. The rest of this paper is organized as follows: In section 4 we discuss
some properties of WNLRT. In section 5 we present our numerical schemes, and in
section 6 we give the results of numerical experiments.

2. 3-D KCL of Giles, Prasad, and Ravindran [17]. Consider a one-parameter
family of surfaces Ωt in (x1, x2, x3)-space, where the subscript t is a parameter whose
different values correspond to different positions of a moving surface. Let n be the
unit normal to Ωt, and let χ be a vector field called a ray vector field in x-space. For
simplicity, we assume χ to be in the direction of n, i.e.,

(2.1) χ = mn,

where m is a scalar. We assume that evolution of Ωt takes place by motion of its
points moving with the ray velocity, i.e., according to

(2.2)
dx

dt
= mn.

If Ωt is given by Ωt : ϕ(x, t) = 0, then ϕ satisfies the eikonal equation ϕt +m|∇ϕ| =
0. From the Hamilton’s canonical equations (or the Charpit’s equations) of this
Hamilton–Jacobi equation we can derive [28]

(2.3)
dn

dt
= − (∇− n〈n,∇〉)m.

Equations (2.2)–(2.3) form the set of ray equations. Given the initial position Ω0 : x =
x0(ξ1, ξ2), we can evaluate its normal n = n0(ξ1, ξ2) and then solve the ray equations
(2.2)–(2.3) to get a parametric representation of Ωt in the form

(2.4) Ωt : x = x(ξ1, ξ2, t).
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Fig. 2.1. A ray coordinate system on a surface Ωt.

Thus, we have introduced a ray coordinate system (ξ1, ξ2, t) on Ωt. Let u and v be,
respectively, the unit tangent vectors of the curves ξ2 = constant and ξ1 = constant
on Ωt; see Figure 2.1. The unit normal n to Ωt is then given by

(2.5) n =
u× v

|u× v| .

Let an element of length along a curve (ξ2 = constant, t = constant) be g1 dξ1
and that along a curve (ξ1 = constant, t = constant) be g2 dξ2. The element of length
along a ray (ξ1 = constant, ξ2 = constant) is m dt, since m is the velocity of the
surface Ωt. The displacement dx in x-space due to increments dξ1, dξ2, and dt is
given by

(2.6) dx = (g1u) dξ1 + (g2v) dξ2 + (mn) dt.

This gives

(2.7) J :=
∂(x1, x2, x3)

∂(ξ1, ξ2, t)
= g1g2m sinχ, 0 < χ < π,

where χ(ξ1, ξ2, t) is the angle between u and v, i.e.,

(2.8) cosχ = 〈u,v〉.
As explained after (3.7), we shall choose sinχ = |u×v|, which requires the restriction
0 < χ < π on χ.

For a smooth moving surface Ωt, we equate xξ1t = xtξ1 and xξ2t = xtξ2 and get
the 3-D KCL of Giles, Prasad, and Ravindran [17],

(g1u)t − (mn)ξ1 = 0,(2.9)

(g2v)t − (mn)ξ2 = 0.(2.10)
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Fig. 2.2. Kink curve Kt (shown with dotted line) on Ωt = Ωt+ ∪ Ωt−.

We also equate xξ1ξ2 = xξ2ξ1 and derive three more scalar equations contained in

(2.11) (g2v)ξ1 − (g1u)ξ2 = 0.

Equations (2.9)–(2.11) are necessary and sufficient conditions for the integrability of
(2.6); see [13].

From (2.9)–(2.10) we can show that (g2v)ξ1 − (g1u)ξ2 does not depend on t.
Existence of coordinates ξ1 and ξ2 on Ω0 guarantees that the condition (2.11) is
satisfied at t = 0. Now (2.9)–(2.10) imply that (2.11) is satisfied for all t. Thus, the
3-D KCL is a system of six scalar evolution equations (2.9)–(2.10). However, since
|u| = 1, |v| = 1, there are seven dependent variables in (2.9)–(2.10): two independent
components of each of u and v, the front velocity m of Ωt, and g1 and g2. Thus, KCL
is an underdetermined system and can be closed only with the help of additional
relations or equations, which would follow from the nature of the surface Ωt and the
dynamics of the medium in which it propagates.

We derive a few results from (2.9)–(2.10) without considering the closure equa-
tion (or equations) for m. The system (2.9)–(2.10) consists of equations which are
conservation laws, so its weak solution may contain shocks which are surfaces in
(ξ1, ξ2, t)-space. Across these shock surfaces m, g1, g2 and vectors u, v, and n will be
discontinuous. The image of a shock surface into x-space will be another surface1—let
us call it a kink surface—which will intersect Ωt in a curve, say kink curve Kt. Across
this kink curve, or simply the kink, the normal direction n of Ωt will be discontinuous,
as shown in Figure 2.2. As time t evolves, Kt will generate the kink surface. A shock
front (a phrase very commonly used in the literature) is a curve in the (ξ1, ξ2)-plane,
and its motion as t changes generates the shock surface in (ξ1, ξ2, t)-space. In the
derivation of (2.9)–(2.11) we assume that the mapping between (ξ1, ξ2, t)-space and
(x1, x2, x3)-space is one to one. This remains true locally even when a kink appears.

1The mapping from (ξ1, ξ2, t)-space to x-space is given by integration of (2.2).
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However, if we have functions u, v, g1, g2, and m which satisfy (2.9)–(2.10), the
mapping from (ξ1, ξ2, t)-space to (x1, x2, x3)-space with the help of (2.2) may develop
folds with kinks and cusps.

The distance dx between two points P (x) and Q′(x + dx) on Ωt and Ωt+dt,
respectively, satisfies the relation (2.6), where (ξ1, ξ2, t) and (ξ1+dξ1, ξ2+dξ2, t+dt)
are corresponding coordinates in (ξ1, ξ2, t)-space. If the points P and Q′ are chosen
to be points on the kink surface (see [27] for a 2-D analogue), then the conservation
of dx implies that the expression for (dx)+ on one side of the kink surface must be
equal to the expression for (dx)− on the other side. Denoting quantities on the two
sides of the kink by subscripts + and −, we get

g1+ dξ1u+ + g2+ dξ2v+ +m+ dtn+

= g1− dξ1u− + g2− dξ2v− +m− dtn−.
(2.12)

We take the direction of the line element PQ′ such that its projection onto the (ξ1, ξ2)-
plane is in the direction of the normal to the shock curve in the (ξ1, ξ2)-plane; then
the differentials are further restricted. Let the unit normal of this shock curve be
(E1, E2), and let K be its velocity of propagation in this plane; then the differentials
in (2.12) satisfy dξ1

dt = E1K and dξ2
dt = E2K, and (2.12) now becomes

(g1+E1u+ + g2+E2v+)K +m+n+

= (g1−E1u− + g2−E2v−)K +m−n−.
(2.13)

Thus, (2.13) is a condition for the conservation of distance (in three independent
directions in x-space) across a kink surface when a point moves along the normal to
the shock curve in the (ξ1, ξ2)-plane.

Using the usual method for the derivation of jump conditions across a shock, we
deduce from the conservation laws (2.9)–(2.10) that

(2.14) K[g1u] + E1[mn] = 0, K[g2v] + E2[mn] = 0,

where a jump [f ] of a quantity f is defined by

(2.15) [f ] = f+ − f−.

Multiplying the first relation in (2.14) by E1 and the second relation by E2, adding
and using E2

1 + E2
2 = 1, we get

(2.16) E1K[g1u] + E2K[g2v] + [mn] = 0,

which is the same as (2.13). Thus we have proved the following theorem; see also [17].
Theorem 2.1. The six jump relations (2.14) imply conservation of distance in

the x1, x2, and x3 directions (and hence in any arbitrary direction in x-space) in the
sense that the expressions for a vector displacement (dx)Kt

of a point of the kink
line Kt in an infinitesimal time interval dt, when computed in terms of variables
on the two sides of a kink surface, have the same value. This displacement of the
point is assumed to take place on the kink surface, and that of its image in (ξ1, ξ2, t)-
space takes place on the shock surface such that the corresponding displacement in the
(ξ1, ξ2)-plane is in direction d

dt (ξ1, ξ2) = (E1, E2)K so that the displacement remains
on the shock front.

This theorem ensures that the 3-D KCL are physically realistic. Consider a point
P on a kink line Kt on Ωt and two straight lines T− and T+ orthogonal to the kink
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line at P and lying in the tangent planes at P to Ωt− and Ωt+ on the two sides of
Kt. Let N− and N+ be normals to the two tangent planes at P . Then the four
lines T+, N+, N−, and T−, being orthogonal to the kink line at P , are coplanar. A
kink phenomenon is basically 2-D. Locally, the two sides Ωt− and Ωt+ of Ωt can be
regarded to be planes separated by a straight kink line. Hence the evolution of the
kink phenomena can be viewed locally in a plane which intersects the planes Ωt−,Ωt+,
and Kt orthogonally, as shown in Figure 3.3.4 of [27].

We state an important result which has been found to be very useful in proving
many properties of the KCL and in setting up the Cauchy data on Ω0. Let P0(x0)
be a given point on Ωt at any time t. Then there exist two one-parameter families of
smooth curves on Ωt such that the unit vectors u0 and v0 along the members of the
two families through the chosen point P0 can have any two arbitrary directions, and
the metrics g10 and g20 at this point can have any two positive values.

3. Energy transport equation from a WNLRT for a polytropic gas and
the complete set of equations. In this section we shall derive a closure relation in
conservation form for the 3-D KCL so that we get a completely determined system of
conservation laws. We take a simpler case of a nonlinear wavefront and not a shock
front. We have explained the distinction between these two clearly in our previous
publication [27, section 1.8]. Let the mass density, fluid velocity, gas pressure, and
local sound velocity of a polytropic gas be denoted by �, q, p, and a. Assume that
initially the gas is in a uniform state and at rest, i.e., �0 = constant, q0 = 0, and
p0 = constant. Consider a member Ωt of a one-parameter family of curved nonlinear
wavefronts in a small amplitude wave [27] moving with the characteristic velocity
q+ an running into the gas. A perturbation in the state of the gas on Ωt under high
frequency approximation can be expressed in terms of an amplitude w and is given
by

(3.1) �− �0 =

(
�0
a0

)
w, q = nw, p− p0 = �0a0w,

where a0 is the sound velocity in the undisturbed medium =
√
γp0/�0 and w is

a quantity of small order, say O(ε). Let us recall what we stated in section 1: all
dependent variables are dimensional in this (and only in this) paragraph. Note that w
here has the dimension of velocity. The amplitude w is related to the nondimensional
normal velocity m of Ωt by

(3.2) m = 1 +
γ + 1

2

w

a0
.

In the ray coordinate system, ∂
∂t represents the time rate of change as we move with

the wavefront. Therefore the operator d
dt = ∂

∂t + m〈n,∇〉 in space-time becomes

simply the partial derivative ∂
∂t in the ray coordinate system (ξ1, ξ2, t). Hence, the

energy transport equation of the WNLRT [27] in nondimensional coordinates becomes

(3.3) mt = (m− 1)Ω = −1

2
(m− 1)〈∇,n〉,

where the italic symbol Ω is the mean curvature of the wavefront Ωt. Consider a thin
ray tube, i.e., a ray tube with a very small cross-sectional area as shown in Figure 3.1.
Let δS be the cross-sectional area at a position t of the ray tube, and let δS0 be that



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Fig. 3.1. Sketch of a ray tube.

at a reference section. The ray tube area A is defined by [27, 35]

(3.4) A := lim
δS0→0

δS

δS0
.

The ray tube area of any ray system is related to the mean curvature Ω (we write
here in nondimensional variables) by

(3.5)
1

A
∂A
∂l

= −2Ω,
∂

∂l
in ray coordinates,

where l is the arc length along a ray. In nondimensional variables we have dl = m dt.
From (3.3) and (3.5) we get

(3.6)
2mt

m− 1
= − 1

mAAt.

This leads to a conservation law, which we accept to be the required one,

(3.7)
{
(m− 1)2e2(m−1)A

}
t
= 0.

We note that, contrary to the result for the energy transport equation in the form{
(m−1)2A}

t
= 0 in a linear ray tube, we now have an addition factor e2(m−1) coming

from nonlinear stretching of the rays.
Integration of (3.7) gives (m− 1)2e2(m−1)A = F (ξ1, ξ2), where F is an arbitrary

function of ξ1 and ξ2. The ray tube area A is given by A = g1g2 sinχ, where χ is
defined by (2.8). In order that A be positive, we need to choose 0 < χ < π. The
energy conservation equation (3.7) now becomes

(3.8)
{
(m− 1)2e2(m−1)g1g2 sinχ

}
t
= 0.

Thus, the complete set of conservation laws for the weakly nonlinear ray theory
(WNLRT) for a polytropic gas comprises the six equations in (2.9)–(2.10) and the
equation (3.8). Equations (2.11) need to be satisfied at any fixed t, say at t = 0.
Once we have a solution of this system in (ξ1, ξ2, t)-space, the results can be mapped
into the x-space by (2.2). This gives successive positions of the wavefront Ωt.

4. Some properties of the system of equations of 3-D WNLRT and
formulation of the ray coordinates for a particular surface. Our main aim in
this paper is to get some interesting geometrical shapes of a propagating nonlinear
wavefront in three dimensions by numerically solving the system of conservation laws
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of 3-D WNLRT. However, in order to get a deeper understanding of WNLRT and
to design an appropriate numerical scheme for this complex system, we need to know
some of its important properties, which require a considerable amount of calculations
and analysis. Hence, we simply quote these properties from [3]. We state the first
result in the form of a theorem and refer to [3] for a proof.

Theorem 4.1. For a given smooth function m of x and t, the ray equations (2.2)
and (2.3) are equivalent to the KCL as long as their solutions are smooth.

Note that (2.2) implies (2.3) with the help of an eikonal equation [28]. Theorem 4.1
is very interesting since ray equations follow from the theory of an eikonal equation
(a partial differential equation for ϕ in R

4, where Ω: ϕ(x, t) = 0), whereas KCL is a
purely geometric result.

The system of seven conservation laws—(2.9)–(2.10) and (3.8)—is quite com-
plex. After considerable algebraic calculations, we can derive a system of seven
differential equations which is given in the usual vector notation for the variable
V = (u1, u2, v1, v2,m, g1, g2)

T as

(4.1) AVt +B(1)Vξ1 +B(2)Vξ2 = 0,

where u1, u2 and v1, v2 are the first two components of the unit vectors u and v,
respectively. The expressions for the matrices A, B(1), and B(2) are given in [3].

We can use also the above differential form of the KCL to deduce the ray equa-
tions. However, the most important use of (4.1) would be the derivation of eigenvalues
and eigenvectors of the equations of WNLRT, which we state in the form of another
theorem; see [3] for the proof.

Theorem 4.2. The system (4.1) has seven eigenvalues λ1, λ2 (= −λ1), λ3 =
λ4 = · · · = λ7 = 0, where λ1 and λ2 are real for m > 1 and purely imaginary
for m < 1. Further, the dimension of the eigenspace corresponding to the multiple
eigenvalue 0 is 4.

Since it has not been possible so far to factorize the characteristic equation for the
eigenvalue λ of the system (4.1), namely, det

(−λA+ e1B
(1)+ e2B

(2)
)
= 0, this result

has been derived indirectly in [3]. First, due to the result mentioned at the end of
section 2, we can first choose a fixed point P0 on Ωt in (x1, x2, x3)-space. At this point,
we take the ξ2 = constant and ξ1 = constant curves to be orthogonal, so that the unit
tangent vectors (u,v)P0 = (u′,v′) are orthogonal. The corresponding characteristic
matrix can now be factorized and we can get the eigenvalues. Two eigenvalues turn
out to be nonzero and distinct, and there is a zero eigenvalue with multiplicity five,
but the dimension of the eigenspace corresponding to this multiple eigenvalue is only
four. Now we can make a linear transformation from the orthogonal vectors (u′,v′)
to the general nonorthogonal vectors (u,v)P0 in the tangent plane to Ωt at P0 and
get the eigenvalues for an arbitrary coordinate system at this point. This procedure
leads to the result stated in the above theorem; see [3] for more details.

The use of the transformation procedure mentioned in the above theorem leads
to another deep result highlighting the relation between the eigenvalues appearing in
a special formulation of a part of the ray equations, namely, (2.3) and the KCL [3].
We stop this discussion here as it takes us away from the main aim of this paper.

There is an extensive discussion of the above results in [3], which puts the theory
of 3-D KCL on a strong mathematical foundation. In this paper we use 3-D KCL to
discuss evolution of a weakly nonlinear wavefront Ωt in three space dimensions and
formation and propagation of curves of singularities on Ωt. However, there is now
a special challenge since Theorem 4.2 shows that the eigenspace of the eigenvalue 0
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is not complete so that WNLRT equations are weakly hyperbolic. Theory of weakly
hyperbolic systems is an active area of research, but it is very much incomplete; see [9,
11, 12, 14, 15, 18, 30, 32, 33] and the references therein; see also [10, 23] for numerical
approximations of certain weakly hyperbolic systems. Appearance of δ-waves and
δ-shocks in the solution of such systems may make the numerical approximation of
weakly hyperbolic systems very complex; see [15]. The main aim of this paper is to
show that in spite of possible difficulties which may arise due to the system being
weakly hyperbolic, we have been able to develop numerical codes showing the efficacy
of the 3-D WNLRT equations in conservation form.

Now we move on to the formulation of the ray coordinates on a given surface and
show how to set up an initial value problem for the equations of WNLRT. Let the
initial position of a weakly nonlinear wavefront Ωt be given as

(4.2) Ω0 : x3 = f(x1, x2).

On Ω0 we choose ξ1 = x1, ξ2 = x2, then

(4.3) Ω0 : x10 = ξ1, x20 = ξ2, x30 = f(ξ1, ξ2)

and

g10 =
√
1 + f2

ξ1
, g20 =

√
1 + f2

ξ2
,

u0 =
(1, 0, fξ1)√
1 + f2

ξ1

, v0 =
(0, 1, fξ2)√
1 + f2

ξ2

.
(4.4)

We can easily check that (2.11) is satisfied on Ω0. The unit normal n0 of Ω0 is

(4.5) n0 = − (fξ1 , fξ2 ,−1)√
1 + f2

ξ1
+ f2

ξ2

,

in which the sign is chosen such that (u,v,n) form a right-handed system. Let the
distribution of the front velocity be given by

(4.6) m = m0(ξ1, ξ2).

We have now completed formulation of the initial data for the KCL (2.9)–(2.10) and
the energy transport equation (3.8).

The problem is to find a solution of the system (2.9)–(2.10) and (3.8) satisfying
the initial data given by (4.4) and (4.6). Having solved these equations, we can get
Ωt by solving the first part of the ray equations, namely, (2.2) at least numerically
for a number of values of ξ1 and ξ2. In the next section we present an approximation
of (2.9)–(2.10) and (3.8) using both the first order staggered Lax–Friedrichs scheme
and the second order Nessyahu–Tadmor scheme.

5. Numerical approximation. Since we have an incomplete set of eigenvectors
for the system (2.9)–(2.10), (3.8), the initial value problem is not well-posed in the
strong hyperbolic sense and is likely to be more sensitive than regular hyperbolic
systems from a computational point of view. Numerical as well as theoretical analysis
indicates that the solution does not belong to BV spaces and is only measure valued.
Despite theoretical difficulties, the aim of this section is to present a numerical solution
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of the KCL (2.9)–(2.10) and (3.8) with initial data (4.4) and (4.6) using simple but
robust central schemes. For a weakly hyperbolic system the central schemes are much
more easily applicable than any characteristic-based scheme. Moreover, the simplicity
of central finite volume schemes makes it convenient to employ them for the numerical
solution of the complex system of conservation laws of WNLRT.

We will work with the first order staggered Lax–Friedrichs scheme [22] and the
second order Nessyahu–Tadmor scheme [26]. Note that the KCL (2.9)–(2.10) and the
energy transport equation (3.8) of WNLRT can be written as a system of conservation
laws,

(5.1) Wt + F1(W )ξ1 + F2(W )ξ2 = 0,

with the conserved variable W and the fluxes Fi(W ) given by

W =
(
g1u1, g1u2, g1u3, g2v1, g2v2, g2v3, (m− 1)2e2(m−1)g1g2 sinχ

)T
,

F1(W ) = (mn1,mn2,mn3, 0, 0, 0, 0)
T
,

F2(W ) = (0, 0, 0,mn1,mn2,mn3, 0)
T
.

(5.2)

Given the initial values of g1, g2, u, v, and m, the initial value of the conserved
variable W is given by the first relation in (5.2). We numerically solve the system
(5.1) to get the updated value ofW . Since |u| = |v| = 1, from the first six components
of W the values of g1, g2, u, and v can be computed very easily. The unit normal n
is then given by (2.5). To get the updated value of the normal velocity m we proceed
as follows. Note that, say,

(5.3) (m− 1)2e2(m−1) =
W7

g1g2 sinχ
≡ k.

We now solve the nonlinear equation

(5.4) η(m) ≡ (m− 1)2e2(m−1) − k = 0

for m using the Newton–Raphson method. The monotonicity of the function η in
(1,∞) ensures the uniqueness of the solution of (5.4). Having obtained the values
of m and n, we numerically integrate the first part of the ray equations (2.2) to
obtain the values of (x1, x2, x3), and this gives the successive position of the nonlinear
wavefront Ωt.

In what follows, we briefly review the staggered Lax–Friedrichs (LxF) scheme
and the Nessyahu–Tadmor (NxT) scheme for the system of conservation laws (5.1)
and refer to [2, 20, 21, 22, 26] for more details. Let us introduce a rectangular grid
which for simplicity is assumed to be uniform with mesh size h = Δξ1 = Δξ2 in both
directions. We will denote by Ci,j the cell centered around the point (ξ1i, ξ2j), i.e.,

Ci,j = [ξ1i − h/2, ξ1i + h/2] × [ξ2j − h/2, ξ2j + h/2
]
. Let Δt be the time step and

denote by Wn
i,j the point value of W at the (i, j)th mesh point at time tn = nΔt.

Finally let W̄n
i,j be the cell average of W taken over Ci,j , i.e.,

(5.5) W̄n
i,j =

1

h2

∫
Ci,j

W (ξ1, ξ2, t
n) dξ1 dξ2.

Given the cell averages W̄n
i,j at time level tn, like the Godunov scheme, central schemes

provide the cell averages at time level tn+1 in the following way. First a piecewise
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O

Fig. 5.1. A geometrical representation of the computational stencil: the original grid is depicted
by solid lines and a staggered grid is denoted by dashed lines.

polynomial reconstruction is done, resulting in

(5.6) Wn(ξ1, ξ2) =
∑
i,j

Pi,j(ξ1, ξ2)1i,j(ξ1, ξ2),

where Pi,j is some vector-valued polynomial and 1i,j is the characteristic function of
the cell Ci,j .

In order to proceed, the reconstruction Wn(ξ1, ξ2) is evolved according to (5.1)
for a time step Δt. In central schemes, Wn(ξ1, ξ2) is evolved on a staggered grid
Ci+1/2,j+1/2 × [tn, tn+1]; see Figure 5.1. We will assume that the solution remains
smooth along the edges of the staggered control volume, provided Δt satisfies the
CFL condition

(5.7)
Δt

h
max(ρ1, ρ2) <

1

2
,

where ρ1 and ρ2 are, respectively, the maximal propagation speeds in the ξ1- and
ξ2-directions given by [4]

(5.8) ρ1 =

(
m− 1

2g21 sin
2 χ

) 1
2

, ρ2 =

(
m− 1

2g22 sin
2 χ

) 1
2

.

An exact integration of (5.1) with dataWn(ξ1, ξ2) over the control volumeCi+1/2,j+1/2
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× [tn, tn+1] yields the staggered update

W̄n+1
i+ 1

2 ,j+
1
2

=
1

h2

∫
Ci,j

W (ξ1, ξ2, t
n) dξ1 dξ2

− 1

h2

∫ tn+1

tn

{∫ ξ2j+1

ξ2j

[F1(W (ξ1i+1, ξ2, τ)) − F1(W (ξ1i, ξ2, τ))] dξ2

}
dτ

− 1

h2

∫ tn+1

tn

{∫ ξ1i+1

ξ1i

[F2(W (ξ1, ξ2j+1, τ))− F2(W (ξ1, ξ2j , τ))] dξ1

}
dτ.

(5.9)

5.1. Lax–Friedrichs scheme. In the LxF scheme we use a piecewise constant
data W̄n

i,j over the cells Ci,j , i.e.,

(5.10) Wn(ξ1, ξ2) =
∑
i,j

W̄n
i,j1i,j(ξ1, ξ2).

Note that the first integral in (5.9) is the cell average of the function Wn(ξ1, ξ2) over
the staggered grid Ci+1/2,j+1/2. Given the reconstruction (5.10), this term can be
computed exactly. The time integrals in (5.9) are approximated by the left rectangle
rule and the space integrals by the trapezium rule, giving us the staggered LxF scheme

W̄n+1
i+ 1

2 ,j+
1
2

=
1

4

(
W̄n

i,j + W̄n
i+1,j + W̄n

i,j+1 + W̄n
i+1,j+1

)
− λ1

2

(
F1(W

n
i+1,j)− F1(W

n
i,j) + F1(W

n
i+1,j+1)− F1(W

n
i,j+1)

)
− λ2

2

(
F2(W

n
i,j+1)− F2(W

n
i,j) + F2(W

n
i+1,j+1)− F2(W

n
i+1,j)

)
,

(5.11)

where λi = Δt/Δξi, i = 1, 2, are the mesh ratios.

5.2. Nessyahu–Tadmor scheme. The NxT scheme [2, 20, 21, 26] is a second
order TVD extension of the LxF scheme. First, a piecewise linear interpolant is
reconstructed from the given cell averages at time tn,

(5.12) W (ξ1, ξ2, t
n) =

∑
i,j

(
W̄n

i,j +W ′
i,j

(
ξ1 − ξ1i

h

)
+W �

i,j

(
ξ2 − ξ2j

h

))
1i,j(ξ1, ξ2),

where W ′
i,j and W �

i,j are, respectively, the discrete slopes in the ξ1- and ξ2-directions.
A possible computation of these slopes which results in an overall nonoscillatory
scheme is given by a family of discrete derivatives parametrized by 1 ≤ θ ≤ 2, for
example,

W ′
i,j = MM

{
θ
(
W̄n

i+1,j − W̄n
i,j

)
,
1

2

(
W̄n

i+1,j − W̄n
i−1,j

)
, θ
(
W̄n

i,j − W̄n
i−1,j

)}
,

W �
i,j = MM

{
θ
(
W̄n

i,j+1 − W̄n
i,j

)
,
1

2

(
W̄n

i,j+1 − W̄n
i,j−1

)
, θ
(
W̄n

i,j − W̄n
i,j−1

)}
.

(5.13)

Here the nonlinear minmod function is defined by

(5.14) MM {v1, v2, . . .} =

⎧⎪⎨
⎪⎩
minp{vp} if vp > 0 ∀p,
maxp{vp} if vp < 0 ∀p,
0 otherwise.
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Another possibility to limit the numerical derivatives is to use a smooth CWENO
(central weighted essentially nonoscillatory) limiter [19],

W ′
i,j = CWENO

{(
W̄n

i+1,j − W̄n
i,j

)
,
(
W̄n

i,j − W̄n
i−1,j

)}
,

W �
i,j = CWENO

{(
W̄n

i,j+1 − W̄n
i,j

)
,
(
W̄n

i,j − W̄n
i,j−1

)}
,

(5.15)

where the CWENO function is defined by

(5.16) CWENO(a, b) =
ϑ(a) · a+ ϑ(b) · b

ϑ(a) + ϑ(b)
, ϑ(a) =

(
ε+ a2

)−2
, ε = 10−6.

Given the linear polynomial (5.12) we can compute the first integral in (5.9) exactly.
The time integrals in (5.9) are approximated by the midpoint rule and the flux inte-
grals by the trapezium rule to give the staggered update

W̄n+1
i+ 1

2 ,j+
1
2

=
1

4

(
W̄n

i,j + W̄n
i+1,j + W̄n

i+1,j+1 + W̄n
i,j+1

)
+

1

16

(
W ′

i,j −W ′
i+1,j −W ′

i+1,j+1 +W ′
i,j+1

)
+

1

16

(
W �

i,j +W �
i+1,j −W �

i+1,j+1 −W �
i,j+1

)
− λ1

2

(
F1

(
W

n+ 1
2

i+1,j

)
− F1

(
W

n+ 1
2

i,j

)
+ F1

(
W

n+ 1
2

i+1,j+1

)
− F1

(
W

n+ 1
2

i,j+1

))
− λ2

2

(
F2

(
W

n+ 1
2

i,j+1

)
− F2

(
W

n+ 1
2

i,j

)
+ F2

(
W

n+ 1
2

i+1,j+1

)
− F2

(
W

n+ 1
2

i+1,j

))
.

(5.17)

Note that in (5.17) the fluxes are to be evaluated at the midpoint values W
n+ 1

2

i,j .
Since these midvalues are secured at the centers of their cells Ci,j , bounded away
from the jump discontinuities along the edges, we may use a Taylor expansion and
the differential form of the conservation law (5.1) to obtain

(5.18) W
n+ 1

2

i,j = W̄n
i,j −

λ1

2
F1(W

n
i,j)

′ − λ2

2
F2(W

n
i,j)

�,

where the discrete derivatives of the flux functions F1 and F2 are calculated in the
same way as (5.13); see [20] for more details.

It is to be noted that a numerical solution of 3-D KCL (2.9)–(2.10) has to be
augmented by the condition (2.11) at any time; i.e., an additional constraint has to
be imposed on the solution in each time step. Fortunately, this constraint is inherent
to the equations; i.e., once fulfilled at the initial data, it is fulfilled for all times.
Thus, this constraint does not change the character of the equations, as in the case of
incompressible Euler equations. The constraint (2.11) is analogous to the solenoidal
condition in the equations of ideal magnetohydrodynamics (MHD). It is well known
from the MHD literature that numerical schemes which violate the divergence-free
constraint produce spurious solutions. In what follows, we show that the staggered
central scheme (5.9) preserves condition (2.11).

Theorem 5.1. The staggered central scheme (5.9) fulfills the condition (2.11).

Proof. In both the staggered LxF scheme and NxT scheme, we approximate the
flux integrals in (5.9) by the trapezium rule. The time integral is approximated in
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the LxF scheme by the left rectangle rule (τ = tn), whereas in the NxT scheme it is

by the midpoint rule (τ = tn+
1
2 ). After these approximations, (5.9) gives

W̄n+1
i+ 1

2 ,j+
1
2

= W̄n
i+ 1

2 ,j+
1
2

− Δt

2h

(
F1(W

∗
i+1,j+1) + F1(W

∗
i+1,j)− F1(W

∗
i,j+1)− F1(W

∗
i,j)
)

− Δt

2h

(
F2(W

∗
i+1,j+1) + F2(W

∗
i,j+1)− F1(W

∗
i+1,j)− F1(W

∗
i,j)
)
,

(5.19)

where W ∗
i,j is a shortcut for W (ξ1i, ξ2j , t

∗) with t∗ = tn or tn+
1
2 . Let us introduce the

finite difference operators

δξω(ξ) := ω

(
ξ +

h

2

)
− ω

(
ξ − h

2

)
,

μξω(ξ) :=
1

2

(
ω

(
ξ +

h

2

)
+ ω

(
ξ − h

2

))
.

(5.20)

Note that (5.19) can then be recast in the compact form

(5.21) W̄n+1
i+ 1

2
,j+ 1

2

= W̄n
i+ 1

2 ,j+
1
2
− Δt

h
δξ1μξ2F1(W

∗
i,j)−

Δt

h
δξ2μξ1F2(W

∗
i,j).

The use of (5.21) in the 3-D KCL system (5.1) results in

(g1u)
n+1
i+ 1

2 ,j+
1
2
= (g1u)

n
i+ 1

2 ,j+
1
2
+

Δt

h
δξ1μξ2 (mn)

∗
i+ 1

2 ,j+
1
2
,

(g2v)
n+1
i+ 1

2 ,j+
1
2
= (g2v)

n
i+ 1

2 ,j+
1
2
+

Δt

h
δξ2μξ1 (mn)

∗
i+ 1

2 ,j+
1
2
.

(5.22)

We approximate (g1u)ξ1 − (g2v)ξ2 in a vertex centered manner,

(5.23) (g1u)ξ1 − (g2v)ξ2 |i+ 1
2 ,j+

1
2
:= μξ2δξ1(g2v)i+ 1

2 ,j+
1
2
− μξ1δξ2(g1u)i+ 1

2 ,j+
1
2
.

Therefore,

(g1u)ξ1 − (g2v)ξ2 |n+1
i+ 1

2 ,j+
1
2

= μξ2δξ1(g2v)
n+1
i+ 1

2 ,j+
1
2

− μξ1δξ2(g1u)
n+1
i+ 1

2 ,j+
1
2

= μξ2δξ1(g2v)
n
i+ 1

2 ,j+
1
2
− μξ1δξ2(g1u)

n
i+ 1

2 ,j+
1
2

using (5.22)

= (g1u)ξ1 − (g2v)ξ2 |ni+ 1
2 ,j+

1
2
.

Thus, if the compatibility condition (2.11) is satisfied at t = tn, then the staggered
central scheme (5.9) preserves it at t = tn+1.

Remark 5.2. It is well known from the literature that the solution of a Cauchy
problem for a degenerate hyperbolic system (with incomplete eigenspace of dimension
one less than the multiplicity of a multiple eigenvalue) contains a mode having linear
growth in time. This component, the so-called Jordan mode, is in the direction of
the corresponding generalized eigenvector. However, the results of our numerical
experiments do not exhibit such a component. In order to understand the reason for
the disappearance of the Jordan mode, we have studied the solution of the linearized
version of the 3-D WNLRT system (5.1). The exact solution of the linearized system
shows that the Jordan mode disappears when the constraint (2.11) is satisfied. Since
the staggered central scheme (5.9) also preserves the constraint (2.11), the Jordan
mode does not appear in the numerical results.
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Fig. 6.1. The successive positions of the nonlinear wavefront Ωt with an initial smooth non-
symmetric dip which is not axisymmetric.

6. Numerical case studies. In order to demonstrate applicability of the 3-D
KCL for modeling of time evolution of nonlinear wavefronts, we present in this section
a few illustrating examples. Interesting phenomena, such as kink lines and kink curves,
can be noticed in the physical (x1, x2, x3)-space.

6.1. Propagation of a nonlinear wavefront which is not axisymmetric.
We choose initial wavefront Ω0 in such a way that it is not axisymmetric. The front
Ω0 has a single smooth dip. The initial data reads

(6.1) Ω0 : x3 = κ

(
1− e

−
(

x2
1

a2 +
x2
2

b2

))
,

where the parameter values are set to be κ = 3, a = 4, b = 8.
The computational domain [−20, 20]× [−20, 20] is divided into 401 × 401 mesh

points. The simulations are done for t = 4.0, 6.0, 8.0 with the NxT scheme with a
CFL number 0.45.

In Figure 6.1, we plot the initial wavefront Ω0 and the successive positions of
the wavefront Ωt at times t = 4.0, 6.0, 8.0. It can be seen that the wavefront has
moved up in the x3-direction and the dip has spread over a larger area in the x1- and
x2-directions. The lower part of the front moves up, leading to a change in shape
of the initial front Ω0. Since the central portion becomes convex at t = 6 the rays
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Fig. 6.2. The sections of the nonlinear wavefront in the (a) y = 0-plane, (b) x = 0-plane, and
(c) x = y-plane at times t = 0.0, 1.0, 2.0, 3.0, 4.0.
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Fig. 6.3. The time evolution of the normal velocity m along the (a) ξ1-direction in section
ξ2 = 0, and (b) ξ2-direction in section ξ1 = 0.

diverge from there, and as a result the front velocity decreases. It can be observed
from the front at time t = 8.0 that the middle part of the upper portion goes down
and becomes concave.

To explain the results of convergence of the rays, we also give in Figures 6.2(a),
(b), and (c) the slices of the wavefront in y = 0-section, x = 0-section, and x = y-
section, respectively, from time t = 0.0 to t = 4.0. Due to the particular choice of
the parameters a and b in the initial data (6.1), the section of the front Ω0 in the
y = 0-plane has a smaller principal radius of curvature than that of the section in the
x = 0-plane. This results in a stronger convergence of the rays in the y = 0-plane
compared to the those in the x = 0-plane, as is evident from Figures 6.2(a) and (b).
The slice (c) along the diagonal plane x = y shows an intermediate effect. In Figure
6.2(a), we clearly note a pair of kinks at time t = 3.0, which we can see in Figure
6.2(c) at time t = 4.0, but there are no kinks in Figure 6.2(b).

We give now the plots of the normal velocity m in the (ξ1, ξ2)-plane along the
ξ1- and ξ2-directions in Figure 6.3. It is observed that m has two shocks in the
ξ1-direction, which corresponds to the two kinks in the x-direction.

6.2. Comparison of 2-D and 3-D KCL results. Suppose in the initial data
(6.1) we choose a = b; then the initial wavefront Ω0 will be axisymmetric,

(6.2) Ω0 : x3 = κ
(
1− e−

r2

a2

)
,
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Fig. 6.4. Comparison of 3-D KCL and 2-D KCL: the solid lines represent the slices of 3-D
wavefronts and the dotted lines are the 2-D wavefronts at times t = 0.0 to t = 6.0. The parameter
a = 4.

where r =
√
x2
1 + x2

2 is the distance from the z-axis. The propagation of a 3-D non-
linear wavefront Ωt with initial data (6.2) is axisymmetric and now reduces to an
essentially 2-D problem with an additional source term due to axisymmetry, analo-
gous to the axisymmetric Euler equations. We have also used the 2-D KCL without
the additional axisymmetry term to study the time evolution of an essentially 2-D
wavefront Ωt. In order to illustrate the genuinely 3-D effects of geometrical conver-
gence, we plot the corresponding results obtained from the 2-D KCL and the 3-D
KCL in Figure 6.4. In this figure, the solid lines represent the successive nonlinear
wavefronts obtained by the 3-D KCL, whereas the dotted lines represent the corre-
sponding 2-D wavefronts obtained using 2-D KCL simulations. It can be observed
that both results agree qualitatively. But the 2-D and 3-D wavefronts coincide only
for small times; the 3-D wavefronts move faster than the 2-D ones. This shows the
effect of truly 3-D geometrical convergence.

6.3. Propagation of an axisymmetric nonlinear wavefront having an
initial smooth elevation. In this test case we choose the initial wavefront Ω0 in
the shape of an elevated Gaussian pulse,

(6.3) Ω0 : x3 = κ

(
1 + e

−
(

x2
1

a2 +
x2
2

b2

))
,

where the parameters are chosen to be κ = 3, a = b = 4.
The computational domain [−20, 20]× [−20, 20] is divided into 401 × 401 equal

mesh points. The numerical simulations are done using the second order NxT scheme
with a CFL number 0.45.

Figure 6.5 shows the successive nonlinear wavefronts at times t = 4.0, 8.0, 16.0. It
can be observed that the whole wavefront has moved up and its height has decreased.
The dent spreads over a larger area. The two kink circles are clearly visible at time
t = 8.0. The central part of the front being convex, the rays diverge, whereas from the
concave lower part they converge. As a result of this, the front velocity m decreases at
the top in the central part and increases at the bottom. Due to this phenomenon, the
outer portion moves up faster and tends to overtake the bulged portion, as evident
from the front at t = 16.0.

We have also plotted the sections of the wavefront in the y = 0-plane and the
distribution of m with ξ1 for ξ2 = 0 in Figure 6.6. From Figure 6.6(b) it can be noted
that there are four shocks in m at t = 8.0 and t = 16 which are mapped onto the four
kinks on the front in Figure 6.6(a).
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Fig. 6.5. The evolution of a nonlinear wavefront Ωt starting from an elevated Gaussian pulse.
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Fig. 6.6. (a) The slices of the wavefronts along y = 0. (b) The distribution of m with respect
to ξ1 along ξ2 = 0.

6.4. Corrugational stability of a nonlinear wavefront. By “corrugational
stability” we mean the stability of a plane front. The corrugational stability of plane
shock fronts was first discussed by Gardner and Kruskal [16] in the context of MHD.
Whitham [35] used his theory of shock dynamics to study this problem. Anile and
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Russo [1] obtained an exact stability criterion for plane relativistic shock waves. The
WNLRT is a very powerful method to study the corrugational stability of a nonlinear
wavefront. The extensive numerical computations by Prasad and Sangeeta [29] with
2-D WNLRT show that a planar nonlinear wavefront in 2-D is stable; see also [24] for
a discussion of corrugation stability of a 2-D shock front.

Here we intend to study the corrugation stability of a 3-D nonlinear wavefront
using WNLRT. We choose the initial front to be of a periodic shape,

(6.4) Ω0 : x3 = κ
(
2− cos

(πx1

a

)
− cos

(πx2

b

))
,

with the constants κ = 0.4, a = b = 2. The initial velocity has a constant value
m0 = 1.2. The computational domain [−4, 4]× [−4, 4] is divided into 401× 401 mesh
points. The simulations are with the staggered LxF scheme for t = 4.0, 8.0, 16.0, 20.0
with a CFL number 0.25. In Figure 6.7 we give surface plots of the initial wavefront
Ω0 and the wavefronts Ωt at times t = 4.0, 8.0, 16.0, 20.0. The front Ωt moves up in
the x3-direction and has developed several kink lines. Four horizontal kinks appear
in each period of the initial front Ω0. During its time evolution, the elevations and
depressions on the front decrease, which shows that the wavefront tends to become
planar, leading to corrugational stability.

In Figure 6.7 the wavefronts at times t ≥ 8 show a very complex pattern of kink
lines; some are horizontal and very clear in the figure. To get a better feeling of this
phenomenon, in Figure 6.8 we plot a zoomed portion in one period of the wavefront.

6.5. The effect of curvature on convergence of rays. In this test problem
the initial wavefront Ω0 is taken to be a part of an axisymmetric paraboloid extended
by the tangent conoid given in the following way:

(6.5) x3 =

{
κ
(
x2
1 + x2

2

)
if 0 ≤ x3 ≤ 1,

2
√
κ(x2

1 + x2
2)

1/2 − 1 otherwise.

In [24, 29] an analogous 2-D test problem was considered. However, as in the previous
test problems we observe a stronger convergence of rays in the 3-D case. We study
this problem for a value of the parameter κ = 1/8. In Figure 6.9 the computational
result obtained by the second order scheme for t = 4.0 is presented. We have used
a grid with 201× 201 cells and have set the CFL number to 0.45. The slopes in the
linear recovery were limited using the CWENO limiter. Exactly the same results were
obtained by the first order staggered LxF scheme. From Figure 6.9 it can be observed
that the wavefront moves up and its bottom tends to become more flat. A circular
kink line appears which separates the upper curved surface from the plane base. In
order to get a better visualization of this phenomenon, in Figure 6.10 we give the
slices of the wavefronts along the y = 0-plane together with the variation of m with
respect to ξ1 along ξ2 = 0. It is to be noted that the results are in good qualitative
agreement with the results of [29].

We have also studied this test problem for some larger value of κ, say κ = 3/4. In
this case the curvature of the initial wavefront at the bottom becomes large so that
the convergence of the rays is quite strong, and the shape of the wavefront ultimately
develops a fold at the bottom, as is the case of linear caustics. Then in the numerical
solution, the value ofm−1 becomes too large after some time and the scheme becomes
unstable and computation fails. The result is certainly a valid solution of the 3-D KCL
till the formation of the fold, but is not a physically realistic solution for the wave
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Fig. 6.7. Nonlinear wavefront Ωt starting initially in a periodic shape with m0 = 1.2. The
front develops a complex pattern of kinks and ultimately becomes planar.

propagation since the values of m − 1 are too large for the WNLRT to be valid.
We have numerically studied this problem extensively in two space dimensions by
2-D KCL (which is not degenerate but strictly hyperbolic). The solution shows the
same behavior—a fold appears when initial curvature of the wavefront is large. The
appearance of a fold and breakdown of the solution are not due to the appearance of
the Jordan mode (as the constraint is initially satisfied), but the appearance of a fold
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Fig. 6.8. A zoomed portion of the periodic nonlinear wavefront Ωt in one period at time t = 8.0.
The wavefront shows four horizontal kink lines forming the boundary of a square and two slanted
ones in the background behind it.

Fig. 6.9. Nonlinear wavefront Ωt initially in a parabolic shape. On the left: initial wavefront
at t = 0.0. On the right: the wavefront at t = 4.0. The value of the parameter κ = 1

8
.

is an inherent property of the waves. A detailed investigation of this aspect of the
2-D KCL and 3-D KCL is under way, and we shall report it later. The appearance
of a fold in the numerical solution is important, as in the physical phenomena a fold
does appear; see the experimental results in [31].

Acknowledgments. The authors sincerely thank the unknown referees for their
extremely valuable comments and Professor Tommaso Ruggeri for personal discussion,
which lead to a considerable improvement of the paper.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AN APPLICATION OF 3-D KCL 2625

−5 −3 −1 1 3 5
0

2

4

6

8

x−axis

z−
ax

is

nonlinear wavefronts

−10 −6 −2 2 6 10
1

1.2

1.4

1.6

1.8

2

ξ
1
−axis

m

normal velocity

t = 0.0

t = 4.0

(a) (b)

Fig. 6.10. (a) Slices of the nonlinear wavefronts along y = 0. (b) The distribution of m with
respect to ξ1 for the problem with initial data (6.5) with κ = 1

8
.

REFERENCES

[1] A. M. Anile and G. Russo, Corrugation stability for plane relativistic shock waves, Phys.
Fluids, 29 (1986), pp. 2847–2852.

[2] P. Arminjon, M. C. Viallon, and A. Madrane, A finite volume extension of the Lax-
Friedrichs and Nessyahu-Tadmor schemes for conservation laws on unstructured grids,
Int. J. Comput. Fluid Dyn., 9 (1997), pp. 1–22.

[3] K. R. Arun and P. Prasad, 3-D kinematical conservation laws (KCL): Evolution of a surface
in R

3—in particular propagation of a nonlinear wavefront, Wave Motion, 46 (2009), pp.
293–311.

[4] K. R. Arun and P. Prasad, Eigenvalues of kinematical conservation laws (KCL) based 3-D
weakly nonlinear ray theory (WNLRT), Appl. Math. Comput. to appear.

[5] S. Baskar and P. Prasad, Kinematical conservation laws applied to study geometrical shapes
of a solitary wave, in Wind over Waves II: Forecasting and Fundamentals, S. Sajjadi and
J. Hunt, eds., Horwood, Chichester, UK, 2003, pp. 189–200.

[6] S. Baskar and P. Prasad, Riemann problem for kinematical conservation laws and geomet-
rical features of nonlinear wavefronts, IMA J. Appl. Math., 69 (2004), pp. 391–420.

[7] S. Baskar and P. Prasad, Propagation of curved shock fronts using shock ray theory and
comparison with other theories, J. Fluid Mech., 523 (2005), pp. 171–198.

[8] S. Baskar and P. Prasad, Formulation of the problem of sonic boom by a maneuvering
aerofoil as a one parameter family of Cauchy problems, Proc. Indian Acad. Sci. (Math.
Sci.), 116 (2006), pp. 97–119.

[9] F. Bouchut, On zero pressure gas dynamics, in Advances in Kinetic Theory and Computing,
Ser. Adv. Math. Appl. Sci. 22, World Scientific, River Edge, NJ, 1994, pp. 171–190.

[10] F. Bouchut, S. Jin, and X. Li, Numerical approximations of pressureless and isothermal gas
dynamics, SIAM J. Numer. Anal., 41 (2003), pp. 135–158.

[11] Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer.
Anal., 35 (1998), pp. 2317–2328.

[12] G. Q. Chen and P. T. Kan, Hyperbolic conservation laws with umbilic degeneracy (I), Arch.
Ration. Mech. Anal., 130 (1995), pp. 231–276.

[13] R. Courant and F. John, Introduction to Calculus and Analysis, Vol. II, John Wiley & Sons,
New York, 1974.

[14] V. G. Danilov and D. Mitrovic, Delta shock wave formation in the case of triangular hy-
perbolic system of conservation laws, J. Differential Equations, 245 (2008), pp. 3704–3734.

[15] B. Enquist and O. Runborg, Multi-phase computations in geometrical optics, J. Comput.
Appl. Math., 74 (1996), pp. 175–192.

[16] C. S. Gardner and M. D. Kruskal, Stability of plane magnetohydrodynamic shocks, Phys.
Fluids, 7 (1964), pp. 700–706.

[17] M. Giles, P. Prasad, and R. Ravindran, Conservation Form of Equations of Three Dimen-
sional Front Propagation, Technical report, Department of Mathematics, Indian Institute
of Science, Bangalore, 1995.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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