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1 Introduction

There is a theory of the modelling of chemical reactions which was initiated at
the beginning of the 1970’s by Martin Feinberg, Fritz Horn und Roy Jackson.
Since then it has continued to be developed further, with Feinberg playing a
central role. It is known under the name ’Chemical Reaction Network Theory’
and the abbreviation CRNT. In this course essential aspects of this theory will
be presented. There are other interesting mathematical aspects of chemical
reactions but here the focus is on CRNT. The classic text in this area is a set of
lecture notes by Feinberg from 1980 [8]. These notes are very good although of
course no longer up to date, since there have been many further developments
since then. In my text the first sections are largely based on the text of Feinberg.
Another good source are the lecture notes of Gunawardena [14].

In chemistry and biology we are often confronted with systems of chemical
reactions which have certain problematic features. They are often very large, i.e.
very many substances are involved. It is often the case that we do not even know
all the substances involved. In addition little is known about the mechanisms
of the reactions involved. In CRNT it is usual to assume that the law of mass
action holds. This assumption is often not very realistic but it has the advantage
of simplicity. In this course we will mainly work with this assumption. Even
with this assumption the problem remains that there is a reaction constant for
each reaction which is often known only very approximately or even not at all.
With this background the main goal of CRNT is to obtain results which depend
as little as possible, and in the best case not at all, on the precise values of the
reaction constants.

What kind of systems do we want to model? First we consider chemical
reactors of the type used in the chemical industry. One type is the discontinuous
stirred tank reactor. Chemical substances are put into a container and stirred
vigorously until the concentrations approach a stationary state. If this is done in
a suitable way then at the end of the process there is a product in the container
which can be used. Then the container can be emptied and the process repeated.
In this context the question arises, whether a stationary state must be reached.
This question will concern us later. If the external conditions (e.g. temperature,
pressure) are held constant we call this a closed system. The second important
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type of reactor is the continuous flow stirred tank reactor. In that case the
container is connected to two pipes. A mixture with constant composition is
introduced through one pipe at constant rate and material is removed through
the other pipe with constant rate. In this way products can be obtained with
constant rate. We call this an open system. CRNT can describe both closed and
open systems. In biology many processes are described by chemical reactions
whereby it must be assumed that the system is open. The container is replaced
in this case by a living cell or another unit (such as a chloroplast).

CRNT is concerned with the study of the solutions of ordinary differential
equations where the unknowns are the concentrations of the substances involved
as functions of time. Why are we allowed to assume that the system can be
described by concentrations? In order to do this it is necessary to suppose that
enough molecules of each substance are present. Otherwise it would be nec-
essary to use a stochastic description. In an industrial reactor this condition
should be comfortably satisfied. In a living cell the situation could be different.
A bacterium has a volume of about 1 fl. There are not always many molecules
of all substances which are to be modelled present. In concrete problems this
question must be posed. If it has been assumed that the continuum description
using concentrations is sufficient the question remains why it is not necessary
to take the spatial variation of the concentrations into account. Otherwise it
would be necessary to model diffusion and we would end up with partial differen-
tial equations (reaction diffusion equations). In a chemical reactor the stirring
serves to remove possible spatial gradients. The reactor will also be built in
such a way that inhomogeneous hydrodynamical effects do not play a role. In
a biological cell the reactants are not stirred but a fact which we thought of as
a disadvantage, the small dimensions of the cell, can be an advantage for the
question under consideration here. The effects of diffusion propagate so fast
in regions of such a small size that concentrations immediately become homo-
geneous. Spatial gradients certainly cannot always be ignored in applications
to cell biology but in many cases they can. It is also the case that on these
scales the fluid behaves as if it were extremely viscous, so that hydrodynamical
effects can be ignored. From this point on we will only consider models given
by ordinary differential equations.

Now we will start to formulate the description of the reactions mathemati-
cally. Let S be a finite set, the set of chemical species. It is often the case in
practice that not all substances actually present can be included in the model.
S is then the set of substances which are in the model and for clarity we call
them internal species. There are often substances whose concentrations are not
modelled because their concentrations are not significantly affected by those of
the internal species. We call them external species. For instance it is the case
that many reactions take place in an aqueous solution. Water is very important
for these reactions but they neither consume nor produce water. It is possible to
make the idealization that the concentrations of external species are constant.
These constant concentrations are then often absorbed in the reaction constants
so that they are not visible in the model.

The next element of the description consists of the reactions themselves.
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Consider for instance the reaction 2H2 + O2 → 2H2O. This formula can be
thought of as a summary of the reaction which takes place in the combustion of
hydrogen. This reaction is in reality much more complicated with many steps
where, for instance, hydrogen radicals play a role. In this course we will not
enter into these complications. We simply consider as an example a reaction
of the form 2A + B → 2C with substances A, B and C. Two molecules of A
come together with one molecule of B and two molecules of C are produced. In
reality it is very unlikely that more than two molecules come close to each other
at one time as in this scenario, but this point will not be considered further
here. If S is given a complex is a formal linear combination of elements of
S with integer coefficients. It can also be considered as a function on S with
values in R. The set of complexes in the network is denoted by C. The case we
have just considered is that where the values of this function are non-negative
integers but it turns out that more general cases are also of interest. We will
often denote a complex by y and its value at the point with index i by yi. In
chemistry the numbers yi are called stoichiometric coefficients. The complexes
in a reaction network form a finite subset C of the vector space F (S) of real-
valued functions on S with pointwise addition. In chemistry this is not the
only meaning of the word complex but when we use the word complex without
further qualification then the meaning just introduced is what is intended. The
space F (S) has a natural basis which is given by the characteristic functions of
the points of S. The characteristic function of the point with index i is denoted
by ωi. In this way the vector space can be identified with Rm, where m is the
number of elements of S. In the example introduced above m = 3 and the
complexes are represented by the vectors [2, 1, 0]T and [0, 0, 2]T . A reaction is
an ordered pair of complexes. The first element is the left hand side with the
substances which go into the reaction (often called educts or reactants) and the
second with the products of the reaction. The reaction which transforms y into
y′ can also be thought of a function on C with the value −1 at the point y and
the value +1 at the point y′. The space F (C) of real-valued functions on C also
has a natural basis given by characteristic functions and can be identified with
Rn, where n is the number of complexes. Because the reactions which occur in
a model are often a combination of several elementary reactions it is useful to
extend the definition of complexes to be non-negative real-valued functions on
S which do not have to take their values in the integers. In this course we will
use this extended definition. The function which is identically zero also defines
a complex which is often denoted by 0. A reaction where the left hand side
is 0 is a source, where certain substances are introduced into the system. One
where the right hand side is 0 is a sink where certain substances are removed
from the system. In a continuous flow stirred tank reactor reactions of these
type always occur. They can also have other interpretations. For instance the
actual reaction is A→ B, where A is an external species and only the internal
species B is visible in the model. The space F (R) of functions on R can be
identified with Rr, where r is the number of reactions.

A reaction network is a finite set S of species together with a finite set C
of complexes where the species they contain belong to S and a finite set R of
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reactions where the complexes they contain belong to C. To avoid trivialities
we assume that there is at least one species, that each species occurs in at least
one complex, that each complex occurs in at least one reaction and that the two
complexes in a reaction are always distinct. It is possible to associate a directed
graph to any reaction network. The nodes of the graph are the complexes and
there is a directed edge from y to y′ precisely when the reaction y → y′ belongs
to the network.

These concepts will now be illustrated using some simple examples. Example
1 describes the combination of two substances A and B to form a substance C
and the dissociation of C where A and B are released. Example 2 consists of
the reactions A→ C, B → C and C → A+B. In both cases the set of species is
{A,B,C}. In the first case the set of complexes is {A+B,C} and in the second
case it is {A,B,C,A + B}. In Example 1 we have m = 3, n = 2 and r = 2
and in Example 2 m = 3, n = 4 and r = 3. In addition we consider a network
which is used in [8] and [14] and which we call Example 3. In this case the set of
species is {A,B,C,D,E} and the set of complexes is {A, 2B,A+C,D,B+E}.
We have m = 5, n = 5 und r = 6.

A path from y to y′ is a sequence y(i), 0 ≤ i ≤ k of complexes with the
properties that y(0) = y, y(k) = y′ and for each i either y(i) → y(i+1) or y(i+1) →
y(i) belongs to R. If y(i) → y(i+1) is always in R the path is called directed.
The trivial case k = 0 is allowed. The condition that a path from y to y′ exists
defines an equivalence relation. In CRNT the corresponding equivalence classes
are called linkage classes. In the standard terminology of graph theory they are
called connected components. The number of linkage classes is denoted by l.
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A network is called reversible if the fact that y → y′ is in the network implies
that y′ → y is in the network. It is called weakly reversible if the existence of
a directed path from y to y′ implies the existence of a directed path from y′ to
y. In general we can define an equivalence relation by saying that y and y′ are
equivalent iff there is both a directed path from y to y′ and one from y′ to y. In
CRNT the corresponding equivalence classes are called strong linkage classes.
Every strong linkage class is contained in a linkage class and the strong linkage
classes coincide with the linkage classes precisely when the network is weakly
reversible. A strong linkage class is called terminal when there is no reaction
from a complex in this class to a complex in a different strong linkage class. The
number of terminal strong linkage classes is denoted by t. In each linkage class
there is at least one terminal strong linkage class. If every strong linkage class
is terminal then the network is weakly reversible.

With the help of the natural bases it is possible to identify linear mappings
between spaces of functions on finite sets with matrices. These mappings can be
fixed by specifying the images under the mapping of the characteristic functions
of points. In what follows we will usually not distinguish between these matrices
and the corresponding linear mappings. An example is the complex matrix Y
of a reaction network which is defined by the condition that the entries of a
column are the stoichiometric coefficients of a certain complex. This matrix is
m× n and satisfies Y ωy = y. In Example 3 it is

1 0 1 0 0
0 2 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (1)

Another matrix Ia is defined as follows. The rows of this matrix correspond
to the complexes and the columns to the reactions. The entry with indices (i, j)
is −1 when the complex i is on the left hand side of the reaction j, +1 when the
complex i is on the right hand side of the reaction j and otherwise zero. This
matrix is n × r. In the stoichiometric matrix N the entry with indices (i, j) is
the net production of the substance i in the reaction j. This matrix is m × r
and its rank is denoted by s. A column of this matrix contains the net rates
of production of the different substances in a particular reaction. It can easily
be seen that in Examples 1 and 2 this matrix has rank 1 and 3 respectively. In
Example 3 this matrix is

−1 2 −1 1 1 0
2 −1 0 0 −1 1
0 0 −1 1 1 0
0 0 1 −1 0 −1
0 0 0 0 −1 1

 (2)

and s = 3. It follows from the definitions that N = Y Ia.
A reaction network as defined here describes which substances react with

which others but not how the reaction takes place. This last point is described
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by the choice of a kinetics. For this a real-valued function vyy′(c) is fixed for
each reaction y → y′. This function should be non-negative and not identically
zero. It describes the rate of the reaction when the concentrations are given by
c. The time evolution of the system is then described by the system

dci
dt

=
∑
yy′∈R

vyy′(c)(y
′
i − yi). (3)

The right hand side can be written in the form Nv and it follows that the sets of
the form c+ imN are invariant under the time evolution. These sets are called
stoichiometric compatibility classes. In Example 2 there is only one class of this
type. In Examples 1 and 3 they have codimension 2.

As has already been mentioned the kinetics which is most often used is that
which follows from the law of mass action. This rule says that the reaction rate
is proportional to the power of the concentration of a substance which is equal
to the number of molecules of this substance which goes into the reaction. In
other words

vyy′(c) = kyy′
m∏
s=1

cyii . (4)

With the abbreviation cy =
∏m
i=1 c

yi
i we get the evolution equations

dci
dt

=
∑
yy′∈R

kyy′c
y(y′i − yi). (5)

Here it is assumed that the coefficients kyy′ are all positive. An alternative is
to sum over all pairs of complexes and to set kyy′ = 0 for the reactions which
are not contained in the network under consideration. The result is

dci
dt

=
∑

(y,y′)∈C×C

kyy′c
y(y′i − yi) (6)

The right hand side of this equation consists of polynomials if the stoichiomet-
ric coefficients are integers. Otherwise it consists of generalized polynomials,
i.e. linear combinations of products of positive powers of the coordinates. In
Example 3 the equations with mass action are as follows

dcA
dt

= −k1cA + k2c
2
B − k3cAcC + k4cD + k5cBcE , (7)

dcB
dt

= 2k1cA − 2k2c
2
B − k5cBcE + k6cD, (8)

dcC
dt

= −k3cAcC + k4cD + k5cBcE , (9)

dcD
dt

= k3cAcC − (k4 + k6)cD, (10)

dcE
dt

= −k5cBcE + k6cD. (11)
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The right hand side of the evolution equations which is now denoted by f(c)
can be rewritten as follows. We define a mapping Ψ from functions on S to
functions on C by Ψ(c) =

∑
y∈C c

yωy and a linear mapping Ak from functions
on C to functions on C by Ak(x) =

∑
R kyy′xy(ωy′ − ωy). In Example 3 the

matrix Ak is 
−k1 k2 0 0 0
k1 −k2 0 0 0
0 0 −k3 k4 k5

0 0 k3 −k4 − k6 0
0 0 0 k6 −k5

 . (12)

Here we can observe certain properties which the matrix Ak always has. The
diagonal entries are negative, the off-diagonal entries are positive and the sum
of each column vanishes. The quantity f can be written as the composition
f = Y AkΨ. The relation Iav = AkΨ also holds. We see that it is possible to
obtain the mapping f as a composition of three mappings, two of them linear.
It is presumably this hidden linear structure which is responsible for many of
the special properties of the systems of ordinary differential equations which are
defined by reaction networks.

When studying the qualitative properties of the solutions of a dynamical
system stationary solutions, i.e. those which are independent of time, play an
important role. Here they are the solutions of the equation f(c) = 0 and the
number of solutions of this type is a central theme in CRNT. The solutions
which are of direct interest for the applications are those which are positive, i.e.
those for which ci > 0 for all i. Let g(c) = AkΨ(c). Then f(c) = Y g(c) and a
special class of stationary solutions are those with g(c) = 0. These solutions are
called ’complex balanced’. Note that

AkΨ =
∑
R
kyy′c

y(ωy′ − ωy) =
∑
R

(kyy′c
y − ky′ycy

′
)ωy′ . (13)

An even more special class are the solutions for which kyy′c
y − ky′ycy

′
= 0 for

all complexes y and y′. These solutions are called ’detailed balanced’. This
last class of reactions used to be very popular in chemistry. It was an essential
insight of CRNT that more general stationary solutions can also be very useful
for chemistry. Detailed balanced solutions are only possible in reaction networks
where all reactions are reversible.

A quantity of central importance in CRNT is the deficiency. Let δ′ be the
dimension of the vector space kerY ∩ imAk. This is evidently a non-negative
integer. The quantity g(u) is contained in imAk. Hence for a system with δ′ = 0
every stationary solution is complex balanced. The deficiency is defined to be
δ′ in [14]. The usual definition in the literature, which is also the one used in
this course, is δ = n − l − s. The inequality δ ≥ δ′ always holds but the two
quantities are in general not equal. In the weakly reversible case they are equal.
These statements will be proved later. The values of the deficiency in Examples
1-3 are δ = 2 − 1 − 1 = 4 − 1 − 3 = 5 − 2 − 3 = 0. The best known theorem
of CRNT concerns the case where the deficiency δ is zero. In this course we
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will first prove this Deficiency Zero Theorem and then consider generalizations
where the deficiency is allowed to be larger. Briefly, the statement is that for
δ = 0 in the weakly reversible case there is exactly one stationary solution in
each stoichiometric compatibility class and that for systems with δ = 0 which
are not weakly reversible there are no positive stationary solutions. In addition,
the stationary solutions in the weakly reversible case are asymptotically stable
within their class.

What is the significance of such results for chemistry and, in particular, for
biology? In these areas it is often implicitly assumed that a system approaches
a unique equilibrium state. This is, however, in practice not always the case.
The presence of several stationary solutions to which a system might converge
is of importance for the description of cellular differentiation. Stem cells are
the ultimate source of all cells. Cells reach their final state through many
generations and in this process the nature of the cell changes. It chooses, as it
were, between different states. In other cases the system does not converge at
all but exhibits sustained oscillations. A striking example is that of biological
clocks. The Deficiency Zero Theorem and other related results provide criteria
with which it is sometimes possible to decide whether the long-time behaviour
of a system shows the simplest pattern or whether it is more complicated.

A class of reaction networks with deficiency zero are the monomolecular
networks. In that case each complex of the network consists of a molecule of
one species. Then there is a one-to-one correspondence between complexes and
particular species. The linkage classes can be identified with disjoint subsets
of S. The rank s is the sum of contributions si of the linkage classes, since
the complexes from different linkage classes are linearly independent. Let ni be
the number of complexes in the linkage classes. Then the deficiency is given by
n − l − s =

∑
i(ni − 1 − si). It turns out that the summands vanish so that

the deficiency also vanishes. To prove this we consider a given linkage class and
the corresponding set of species Si. If we add a new reaction between species in
Si then neither ni nor the dimension si of the space spanned by the functions
ωy′ − ωy changes. Thus ni − 1 − si is preserved. In order to compute this
quantity we can replace the original network by the extended network where
there is a reaction between each pair of elements. The values of a function in
the space under consideration always have the sum zero, which implies that
the dimension is at most ni − 1. We can, however, find ni − 1 reactions in
the extended network which are linearly independent. Let the elements of Si
in some order be y(1), . . . , y(ni). Then the functions ωy(j+1) − ωy(j) are linearly
independent for 1 ≤ i ≤ ni − 1. The argument in which an extra reaction is
added is independent of the fact that the network is monomolecular. It follows
that when two networks have the same species, the same complexes and the
same linkage classes they have the same deficiency. Moreover, if no species
occurs in more than one linkage class then the relation s =

∑
i si holds.

Networks of monomolecular reactions have many applications in biology.
One example is that of the phosphorylation systems. We have a protein, which is
a chain of amino acids. For some of these amino acids a phosphate group can be
joined to them. The sites which are occupied by phosphate groups can be used to
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store information. A concrete example is a protein called NFAT (nuclear factor
of activated T cells) [19]. This protein occurs in certain white blood cells, for
instance in T cells. In a resting cell this protein is in the cytosol, in other words
it is outside the nucleus of the cell, and it is equipped with thirteen phosphate
groups. When the cell is activated an enzyme called calcineurin becomes active
and removes the phosphate groups. This causes a conformational change in
the protein which leads to the protein being moved to the nucleus. There it
can interact with the DNA and act as a transcription factor. The phosphate
groups can later be attached to the protein again. These groups are removed in
a certain order and attached in the reverse order. The protein exists in many
different forms. The number of phosphate groups can be anything between 0
and 13. It can be in two different conformations. It can be in the cytosol or in
the nucleus. The transport processes can be formally considered as reactions,
where the substance in the two spatially separated regions is treated as different.
This situation can be modelled by a system of ordinary differential equations
with mass action kinetics. There are 56 unknowns and 134 parameters for the
corresponding number of reactions. The second number is dependent on the
assumptions that the rates of the reactions relating the two conformations are
the same in the cytosol and in the nucleus and that the rate of transport between
the two compartments is the same for all forms of the protein. Despite these
large numbers it is easy, with the help of CRNT, to obtain information about
the dynamics. This is a monomolecular system and thus of deficiency zero. It is
reversible. Hence the Deficiency Zero Theorem can be applied to it to see that
the dynamics is very simple.

A similar example is that of kinetic proofreading which was analysed in [21].
It is again concerned with T cells. On the surface of a T cell there is a molecule
called the T cell receptor, which we denote by T . This receptor can bind to a
certain substance, which we denote by M . (It is a protein which is bound to
an MHC molecule.) The binding reaction is of the form T + M → C0. The
bound receptor C0 can be equipped with up to N phosphate groups to produce
compounds Ci. Each Ci can decay, releasing T , M and the phosphate groups.
Since the phosphate groups are not modelled explicitly we get the reaction
Ci → T + M . The network is weakly reversible. There are N + 2 complexes.
To show that δ = 0 it thus suffices to show that s = N + 1. To give an intuitive
idea why this is the case we show the stoichiometric matrix in the case N = 2.

−1 0 0 1 1 1
−1 0 0 1 1 1
1 −1 0 −1 0 0
0 1 −1 0 −1 0
0 0 1 0 0 −1

 (14)

In general the first N+1 columns are linearly independent and all other columns
can be written as linear combinations of the first N + 1 columns.
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2 Background from the theory of ordinary dif-
ferential equations

Consider a system of the form ẋ = f(x), where x is a mapping from an interval
I ⊂ R to Rm. A good theory of the initial value problem with statements about
existence and uniqueness is obtained if f is locally Lipschitz. This holds if f
is continuously differentiable. If the stoichiometric coefficients are integers this
condition is always satisfied for the equations coming from reaction networks.
It is also satisfied if all non-trivial stoichiometric coefficients are ≥ 1. The
solutions of ordinary differential equations always depend continuously on the
initial data. In applications to reaction networks we are always concerned with
solutions which are positive or at least non-negative. We would like to know that
these conditions follow from corresponding assumptions on the initial data. This
will now be proved for a class of equations which includes the reaction equations.
Lemma 2.1 Let x be a solution of the system ẋi = fi(x), where fi(x) =
fi,1(x) − xifi,2(x) for each i, and the functions fi,1 and fi,2 are C1 and non-
negative. If xi(t0) > 0 for all i then xi(t) > 0 for all i and all t ≥ t0. If xi(t0) ≥ 0
for all i then xi(t) ≥ 0 for all i and all t ≥ t0.
Proof If the first statement were false then there would be a smallest number
t1 > t0 with mini xi(t1) = 0. Let i be an index for which this minimum is
attained. Then xi(t1) = 0. It follows that for t0 ≤ t < t1 the inequality

ẋi(t) ≥ −xi(t)fi,2(x(t)) (15)

holds. Hence d/dt(log xi) ≥ −C, where C is the supremum of fi,2 on the image
of [t0, t1] under x. It follows that xi(t1) ≥ e−Cxi(t0) > 0, a contradiction. The
second statement of the Lemma then follows from the continuous dependence
of the solution on the intial data.

A stationary solution of the system is a point x with f(x) = 0. These
solutions are often significant for the behaviour of more general solutions. In
this context the notion of stability plays an important role.
Definition Let x0 be a stationary solution of the system ẋ = f(x). It is called
stable if for each open neighbourhood U of x0 there is a neighbourhood V of x0

with the property that each solution which starts in V stays in U . It is called
asymptotically stable if it is stable and there is a neighbourhood U of x0 with
the property that each solution which starts in U converges to x0 for t→∞.

A tool which can often be used to prove the stability of stationary solutions
is the Lyapunov function. If V is a function on an open subset of Rn then let
V̇ = ∂V

∂xi
fi(x). By the chain rule V̇ = d

dt (V (x(t)). A function which satisfies

V̇ ≤ 0 is called a Lyapunov function.
Theorem 2.1 Let U be an open neighbourhood of a point x0 ∈ Rn. Let f
be a C1 mapping from U to Rn with f(x0) = 0. Let V be a C1 function with
V (x0) = 0 and V (x) > 0 for x 6= x0. If V̇ (x) ≤ 0 for all x ∈ U then x0 is stable.
If V̇ (x) < 0 for all x ∈ U except x = x0 then x0 is asymptotically stable.

This theorem will not be proved here. Let x(t) be a solution of a sys-
tem of ordinary differential equations. If there is a sequence of times tn with
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limn→∞ tn = ∞ and a point x∗ with the property that limn→∞ x(tn) = x∗
then x∗ is called an ω-limit point of the solution x(t). The set of these points
is called the ω-limit set of this solution. Let y(t) be the solution with initial
value x∗. Then the image of y(t) lies in the ω-limit set of x(t). If the image
of a solution x(t) is contained in a compact set then the ω-limit set of x(t) is
connected. If V is a Lyapunov function for the system ẋ = f(x) then a point
x∗ where V̇ (x∗) < 0 can never be an ω-limit point of a solution of the system.

3 The Deficiency Zero Theorem

The theorem which is the subject of this section can be found in various forms
in the literature. Here we choose the following form.
Theorem 3.1 (The Deficiency Zero Theorem) Let ẋ = f(x) be the dynamical
system which is defined by a reaction network of deficiency zero under the
assumption of mass action kinetics. Then
(i) if the network is not weakly reversible then there exist no positive stationary
solutions
(ii) if the network is weakly reversible then there exists precisely one positive
stationary solution in each stoichiometric compatibility class. This solution is
asymptotically stable in its class.

Now we develop some ideas which will be used in the proof of this theorem.
First we consider the matrix Ak.
Proposition 3.1 Consider a network with terminal strong linkage classes (Λ1, . . . ,Λt).
The kernel of Ak has a basis {x1, . . . , xt} with the property that that Λi is the
support of xi and xi is positive on Λi for all i.

In particular the dimension of the kernel of Ak is always t and does not
depend on the reaction constants. A possible choice of the basis of Proposition
3.1 in Example 3 is ([k2, k1, 0, 0, 0]T , [0, 0, k5(k4 + k6), k3k5, k3k6]T ). To prove
this proposition we use the approach of [7]. There is a relation to the Perron-
Frobenius theorem and another proof, which uses this theorem directly, can be
found in [14].

Proposition 3.1 will now be proved in several steps, following ([7]). If χ is a
function on C let |χ| be its modulus, calculated pointwise. For a complex y let
R→y be the set of reactions whose right hand side is y and let Ry→ be the set
of reactions whose left hand side is y.
Lemma 3.1 If χ ∈ kerAk then |χ| ∈ kerAk.
Proof Akχ =

∑
y∈C{

∑
R→y ky′yχ(y′)− (

∑
Ry→ kyy′)χ(y)}ωy. Since the ωy are

linearly independent χ is in the kernel of Ak precisely when the curly bracket
vanishes. Hence for χ ∈ kerAk we have∑

R→y

ky′y|χ(y′)| ≥ (
∑
Ry→

kyy′)|χ(y)|. (16)

Summing this inequality over y gives∑
y∈C

∑
R→y

ky′y|χ(y′)| ≥
∑
y∈C

∑
Ry→

kyy′ |χ(y)| (17)

11



Equality holds in (17) precisely when it holds in (16). Since in fact equality
holds in (17) it also holds in (16). It then follows that∑

R→y

ky′y|χ(y′)| = (
∑
Ry→

kyy′)|χ(y)| (18)

and that χ ∈ kerAk implies |χ| ∈ kerAk.
Lemma 3.2 If χ ∈ kerAk, χ(y) = 0 and there is a directed path from y′ to y
then χ(y′) = 0.
Proof If y = y′ the statement is clear. It follows from (18) that when y′y ∈ R
and χ(y) = 0 it is also the case that χ(y′) = 0. The statement of Lemma 3.2
follows by repeated application of this fact.
Lemma 3.3 Let Λ be a strong linkage class, not necessarily terminal. If χ ∈
kerAk and χ(y) = 0 for some y ∈ Λ then χ(y′) = 0 for all y′ ∈ Λ.
Proof If y and y′ are in the same strong linkage class then there exists a directed
path from y′ to y and the statement of Lemma 3.3 follows from that of Lemma
3.2.
Lemma 3.4 Let I be the set of all complexes which are contained in terminal
strong linkage classes and let χ ∈ kerAk. Then suppχ ⊂ I.
Proof If I = C the statement is trivial. Suppose then that I 6= C. For y ∈ I
let

Rint
→y = {y′y ∈ R : y′ ∈ I}, (19)

Rext
→y = {y′y ∈ R : y′ /∈ I}. (20)

R→y is the union of these two sets. If we use this fact and sum (18) over I we
get ∑

y∈I

∑
Rint
→y

ky′y|χ(y′)|+
∑
y∈I

∑
Rext
→y

ky′y|χ(y′)| =
∑
y∈I

∑
Ry→

kyy′ |χ(y)|. (21)

The first term on the left hand side in this equations is equal to the expression
on the right hand side. Hence

∑
y∈I

∑
Rext
→y
|χ(y′)| = 0. Let

G = {y′ ∈ C \ I : there is y′y ∈ R with y ∈ I}. (22)

Then χ vanishes on G. Since G is a finite set it follows that for each y′′ ∈ C \ I
there is y′ ∈ G for which there is a directed path from y′′ to y′. Hence it follows
from Lemma 3.2 that χ(y′′) = 0 for all y′′ ∈ C \ I and that suppχ ∈ I.

Let Γi be the space of functions on C whose support is contained in Λi. Then
according to Lemma 3.4 the kernel of Ak is contained in the direct sum of of
the Γi.
Lemma 3.5 For 1 ≤ i ≤ t the space Γi is invariant under Ak.
Proof Let Ri = {yy′ ∈ R : y ∈ Λi}. If χ ∈ Γi then χ(y) = 0 for y /∈ Λi. Hence
the sum in the definition of Ak can be restricted to Ri when χ ∈ Γi. If Ri is
empty (as it is when Λi only has one element) then Akχ = 0 and the statement
holds. Suppose then that Ri is not empty. Since Λi is terminal the fact that
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yy′ ∈ Ri implies that y and y′ are in Λi. Then the support of each summand is
in Γi and Akχ ∈ Γi.
Lemma 3.6 For 1 ≤ i ≤ t there exists χi ∈ Γi with the following properties.
(a) Akχi = 0
(b) χi(y) > 0 for all y ∈ Λi
(c) If χ′i ∈ Γi and Akχ

′
i = 0 then χ′i = αχi for a number α

Proof Let Ak,i be the restriction of Ak to Γi. Then

Ak,iχ =
∑

yy′∈Ri

kyy′χ(y)(ωy′ − ωy) (23)

dim(imAk,i) is smaller than dimΓi, since
∑
y∈Λi

ωy is orthogonal to imAk,i.
Hence Ak,i has a non-trivial kernel. Let χi be a non-vanishing element of kerAk,i.
Then χi ∈ kerAk,i and suppχi ⊂ Λi. But according to Lemma 3.3 Λi ⊂ suppχi.
Hence suppχi = Λi. χi(y) = 0 holds for y /∈ Λi and χi(y) 6= 0 for y ∈ Λi. Thus
parts (a) and (b) have been proved. Suppose there exists χ′ ∈ Γi with Akχ

′ = 0.
There is a number α with the property that χ′ − αχ = 0 for some y ∈ Λi. The
function χ′ − αχ is in kerAk and according to Lemma 3.3 it vanishes on the
whole of Λi. Since the support of χ′ − αχ is in Λi it follows that χ′ = αχ and
part (c) is proved.

Now we can prove Proposition 3.1. Let χi ∈ Γi be vectors which have the
properties (a) and (b) of Lemma 3.6. We will show that these vectors form a
basis for the kernel of Ak. This suffices to prove the proposition. The vectors
are linearly independent. It remains to show that each function χ in Ak is a
linear combination of these vectors. Let χ ∈ kerAk. Then

χ = χ′1 + . . .+ χ′t (24)

with χ′i ∈ Γi for 1 ≤ i ≤ t. It follows that

Akχ = Akχ
′
1 + . . .+Akχ

′
t = 0 (25)

According to Lemma 3.5 Akχ
′
i ∈ Γi for all i. By Lemma 3.6, part (c) there

exist numbers αi so that Akχ
′
i = αiχi for all i. This completes the proof of

Proposition 3.1.
It follows in particular that the dimension of the kernel of Ak is t, indepen-

dent of the reaction constants.
Corollary 3.1 The kernel of Ak contains a positive vector iff the network is
weakly reversible.
Proof If the network is not weakly reversible then there is a complex ŷ ∈ C
which is not in any terminal strong linkage class. Otherwise the linkage classes
would agree with the strong linkage classes. Since, according to Proposition 3.1,
each vector in the kernel of Ak is a linear combination of vectors in the terminal
strong linkage classes it must be the case that x(ŷ) = 0 for each function x in the
kernel of Ak. Thus there is no positive vector in the kernel of Ak. Conversely,
if the network is weakly reversible then each complex is in a terminal strong
linkage class. Then the sum of the basis vectors in Proposition 3.1 is the desired
vector.
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Corollary 3.2 There exist positive constants αyy′ with∑
R
αyy′(ωy − ωy′) = 0 (26)

precisely when the network is weakly reversible.
Proof Suppose first that the network is weakly reversible. Let k be a positive
element of Rr and let Ak be as before. It follows from Proposition 3.1 und
Corollary 3.1 that there exists a positive vector x̂ in the kernel of Ak. We then
choose αk = kyy′ x̂(y). Suppose that the network were not weakly reversible and
that a positive solution α exists. Let

Aα(x) =
∑
R
αyy′x(y)(ωy − ωy′) (27)

and let x̄ be the vector with x̄(y) = 1 for all y ∈ C. Then Aα(x̄) = 0 and x̄ is a
positive vector in the kernel of Aα, in contradiction to Corollary 3.1.

For a reaction network let

∆′ = {ωy′ − ωy : yy′ ∈ R} (28)

and
∆ = {ωy′ − ωy : there is a path from y to y′}. (29)

It is clear that the space which is the span of ∆′ is contained in the span of ∆.
In fact both these spaces are equal.
Lemma 3.7 The spans of the sets ∆ and ∆′ are equal.
Proof We already know the one inclusion and it only remains to show the other.
The cases that the length of the path is zero or one are obvious. In general there
are complexes y(0), . . . , y(n) which link y to y′. Then we write

ωy′ − ωy = (ωy(n) − ωy(n−1)) + . . .+ (ωy(1) − ωy(0)). (30)

Lemma 3.8 For a network with n complexes and l linkage classes the dimensions
of the two spaces in the statement of Lemma 3.7 are equal to n− l.
Proof For the proof we consider the space which is defined by ∆. Let {L1, . . . , Ll}
be the linkage classes of the network and for θ = 1, . . . , l let

∆θ = {ωy′ − ωy : y, y′ ∈ Lθ} (31)

Then ∆ is the union of the ∆θ and the span of ∆ is the direct sum of the spans
of the ∆θ. Let nθ be the number of complexes in Lθ. The dimension of the
span of Lθ is nθ − 1. It follows that the dimension of the direct sum is given by∑l
θ=1(nθ − 1) = n− l.

Lemma 3.9 Let Lθ be the linkage classes of a reaction network. Then the set
{ωLθ} is a basis for the orthogonal complement the space span(∆).
Proof Each element of this set is orthogonal to each element of ∆ and the set
is linearly independent. Since the dimension of the space of functions on C is n
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the orthogonal complement has the dimension n − (n − l) = l. Thus the given
set is a basis of the orthogonal complement.

It follows from Lemma 3.9 that a vector g is in span(∆) precisely when the
inner product of g with ωLθ is zero for all θ.
Corollary 3.3 imAk = span(∆) precisely when each linkage class of the network
contains exactly one terminal strong linkage class. This statement holds in
particular when the network is weakly reversible.
Proof Since imAk is contained in span(∆) we only have to check whether these
two spaces have the same dimension. From Lemma 3.8 we know that the di-
mension of span(∆) is n− l. Since the dimension of the space of functions on C
is n it follows from linear algebra that dim imAk = n− t, where t is the number
of terminal strong linkage classes. Hence the difference of the two dimensions
is t− l and so the desired condition holds when each linkage class contains pre-
cisely one terminal strong linkage class. This condition is evidently satisfied for
weakly reversible networks.
Proposition 3.2 The deficiency δ of a network satisfies

δ = dim(kerY ∩ span(∆)). (32)

When, in particular, the deficiency of the network is zero kerY ∩span(∆) = {0}.
Proof Let Ȳ be the restriction of Y to span(∆). Then

dim span(∆) = dim kerȲ + dim imȲ (33)

It follows from Lemma 3.8 that dim span(∆) = n − l. In addition imȲ =
Y (span(∆)) = S. The relation kerȲ = kerY ∩ span(∆) also holds. It follows
that dim(kerY ∩ span(∆)) = n− l − s = δ.

We see that δ ≥ 0 and that δ′ = δ exactly when t = l.
Corollary 3.4 A function α on R satisfies the equation∑

R
αyy′(y

′ − y) = 0 (34)

if it satisfies the equation ∑
R
αyy′(ωy′ − ωy) = 0 (35)

When the deficiency of the network is zero then it satisfies the first equation
only when it satisfies the second.
Proof The first equation can be rewritten as

Y (
∑
R
αyy′(ωy′ − ωy)) = 0 (36)

which implies the first statement of the Corollary. For the converse we use the
fact that

∑
R αyy′(ωy′ − ωy) ∈ kerY ∩ span(∆). When δ = 0 the space on the

right hand side consists only of zero.
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Corollary 3.5 For a network of deficiency zero the equation (34) has a positive
solution precisely when the network is weakly reversible.
Corollary 3.6 For a network of deficiency zero the condition kerY Ak = kerAk
holds.
Proof Since kerAk is obviously contained in ker(Y Ak) we only have to prove
the reverse inclusion. If x ∈ ker(Y Ak) then Akx is contained in kerY . Since Ak
takes its values in span(∆) it follows that Akx is in kerY ∩ span(∆). Hence it
can be concluded using Proposition 3.2 that Akx = 0 and that x ∈ kerAk.

4 The position of stationary solutions

In this section some properties of stationary solutions of reaction networks are
derived. Later it will be shown that under certain circumstances a system of
equations coming from a reaction network has exactly one stationary solution
in each stoichiometric compatibility class. In order to do this it is shown that
the set of stationary solutions is the set E of points of the positive orthant with
log c − log c∗ ∈ S⊥ for a fixed positive element c∗. The logarithm is defined
pointwise. We want to know that E meets each stoichiometric compatibility
class in exactly one point. The uniqueness is easy. If c and c′ are two points of
E in the same stoichiometric compatibility class then c−c′ ∈ S and log c′−log c ∈
S⊥. It follows that

0 = (c′ − c) · (log c′ − log c) =
∑
s∈S

(c′(s)− c(s))(log c′(s)− log c(s)). (37)

Since the logarithm is strictly increasing this can only hold if c′(s) = c(s) for
all s. It remains to prove the existence statement. We define the exponential
function and the product pointwise.
Proposition 4.1 Let S be a finite set and F (S) the vector space of real-valued
functions on S, let S be a linear subspace of F (S) and let a and b be two positive
elements of F (S). Then there exists a unique vector µ in S⊥ with the property
that aeµ − b ∈ S.
Proof Let φ : F (S)→ R be defined by φ(x) =

∑
s∈S [a(s)ex(s) − b(s)x(s)]. The

gradient of φ at the point x is given by ∇φ(x) = aex − b and its Hessian by
H(x)γ = (aex)γ. H(x) is positive definite. For all γ ∈ F (S), not equal to zero,
we have

γ ·H(x)γ = γ · aexγ =
∑
s∈S

a(s)ex(s)(γ(s))2 > 0. (38)

Hence the function φ is strictly convex. Next we want to show that limα→∞ φ(αx) =
∞. Now

φ(αx) =
∑
s∈S

(a(s)eαx(s) − αb(s)x(s)) (39)

For x(s) 6= 0 the positivity of a(s) and b(s) implies

lim
α→∞

(a(s)eαx(s) − αb(s)x(s)) =∞ (40)
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while for x(s) = 0 we have

a(s)eαx(s) − αb(s)x(s) = a(s) (41)

This means that (39) has been proved. Now let φ̄ be the restriction of φ to S⊥.
Since φ is continuous and convex the restriction φ̄ also has these properties.
Thus the set C = {x ∈ S⊥ : φ̄(x) ≤ φ̄(0)} is closed and convex. It does not
contain any subset of the form {αx : α ∈ (0,∞)}. Thus C is bounded [22] and
compact. Hence there exists µ ∈ C with the property that φ̄(µ) ≤ φ̄(x) for all
x ∈ C. It follows that ∇φ(µ) · γ = 0 for all γ ∈ S⊥ and that ∇φ(µ) lies in
S. This completes the existence proof. To obtain uniqueness, let µ′ ∈ S⊥ be a
solution of aeµ

′ − b = S. Then a(eµ
′ − eµ) = 0 and, since µ′ − µ ∈ S⊥ we have∑

s∈S
a(s)(µ′(s)− µ(s))(eµ

′(s) − eµ(s)) = 0 (42)

Since a(s) is positive and the exponential function is strictly increasing this
statement can only hold if µ′ = µ.
Corollary 4.1 For a positive element c∗ of F (S) the set E meets each stoichio-
metric compatibility class in exactly one positive point.
Proof Let p be an arbitrary positive element of F (S). We will show that the
stoichiometric compatibility class which contains p meets the set E in exactly
one point. That there is at most one point of this kind was already shown. To
get existence we first note that Proposition 4.1 implies the existence of a point
µ ∈ S⊥ with c∗eµ − p ∈ S. Let c = c∗eµ. Then c is positive and lies in the
stoichiometric compatibility class which contains p. Taking the logarithm of
both sides shows that log c− log c∗ = µ ∈ S⊥. Thus c lies in E.

5 Proof of the Deficiency Zero Theorem

In this section the Deficiency Zero Theorem will be proved with the help of the
techniques developed up to this point. First we prove the relatively easy part
(i).
Lemma 5.1 The differential equations which are obtained from a reaction net-
work under the assumption of mass action kinetics only have a positive station-
ary solution when there is a positive α with

∑
R αyy′(y

′ − y) = 0.
Proof Let c∗ be a positive stationary solution. Then we can take αyy′ as the
rate of the reaction y → y′ when the concentrations are given by c∗.

Part (i) of the Deficiency Zero Theorem now follows from Corollary 3.5 and
Lemma 5.1.

Next we will prove part (ii) under the assumption that a complex balanced
positive stationary solution exists without using the condition δ = 0. If c∗ is a
stationary solution then Ψ(c∗) ∈ ker(Y Ak). If in addition Ψ(c∗) ∈ ker(Ak) then
it is possible to draw further conclusions.
Proposition 5.1 If a positive stationary solution c∗ satisfies AkΨ(c∗) = 0, i.e.
c∗ is complex balanced, then f(c) · (log c− log c∗) ≤ 0 for all positive points c of
F (S). Moreover the following conditions are equivalent:
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(i) f(c) · (log c− log c∗) = 0
(ii) log c− log c∗ ∈ S⊥
(iii) AkΨ(c) = 0
(iv) f(c) = 0
Remark The assumption of the Proposition implies that the network is weakly
reversible.
Proof Let µ = log c− log c∗. Then cy = (c∗)yey·µ(c). As a consequence f(c) =∑
R kyy′(c

∗)yey·µ(c)(y′ − y). It follows that

f(c) · (log c− log c∗) =
∑
R
kyy′(c

∗)yey·µ(c)(y′ · µ(c)− y · µ(c)) (43)

Now the exponential function has the property that eα(α′ − α) ≤ eα
′ − eα for

all real numbers α and α′ with equality only for α = α′. Thus we can conclude
that

f(c) · (log c− log c∗) ≤
∑
R
kyy′(c

∗)y(ey
′·µ(c) − ey·µ(c)) (44)

with equality only when µ(c) · (y′−y) = 0 for all reactions in R. The right hand
side of the last inequality can be rewritten in the form[∑

R
kyy′(c

∗)y(ωy′ − ωy)

]
·
∑
y′′∈C

ey
′′·µ(c)ωy′′ . (45)

The expression in the bracket is nothing other than AkΨ(c∗), which by assump-
tion is zero. Hence f(c) · (log c− log c∗) ≤ 0.

It is clear that (ii) implies (i). Conversely, when (i) holds then equality holds
in (44). Since the vectors y−y′ span the subspace S condition (ii) follows. Now
it will be shown that (ii) implies (iii). The network is weakly reversible and
hence its terminal strong linkage classes coincide with its linkage classes. The
latter will be denoted by {L1, . . . , Ll}. Moreover Proposition 3.1 implies that
there is a basis x1, . . . , xl of kerAk with the property that supp xθ = Lθ for
θ = 1, . . . , l. Hence Ψ(c∗) has a representation of the form

Ψ(c∗) =

l∑
θ=1

(
∑
y∈Lθ

(c∗)yωy) =

l∑
θ=1

λθx
θ (46)

for constants λθ. Since we know where the support of xθ lies we can conclude
that (c∗)yωy = λθx

θ for all θ. Hence the set (c∗)yωy is also a basis for kerAk.
Suppose that µ(c) ∈ S⊥. We know that y′ · µ(c) = y · µ(c) whenever there is a
path joining y and y′. This means that there exist numbers ξ1, . . . , ξl with the
property that y · µ(c) = ξθ for all y ∈ Lθ. It follows that

Ψ(c) =
∑
y∈C

cyωy =
∑
y∈C

(c∗)yey·µ(c)

=

l∑
θ=1

(
∑
y∈Lθ

(c∗)yey·µ(c)ωy) =

l∑
θ=1

eξθ (
∑
y∈Lθ

(c∗)yωy) (47)
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Hence AkΨ(c) = 0. That (iv) follows from (iii) is apparent from the formula for
f(c) and it is obvious that (i) follows from (iv).
Corollary 5.1 Under the assumptions of Proposition 5.1 the equations have
precisely one stationary solution in each stoichiometric compatibility class.
Proof Due to the equivalence of (ii) und (iv) in Proposition 5.1 the positive
stationary solutions coincide with the set E. According to Corollary 4.1 this set
meets each stoichiometric compatibility class in precisely one point.

We have obtained a lot of information about the stationary solutions. Now
we would like to have dynamical information and we will do this with the help of
Lyapunov functions. For a fixed positive function c∗ on S let h be the function

h(c) =
∑
s∈S

[c(s)(log c(s)− log c∗(s)− 1) + c∗(s)] (48)

Evidently h(c∗) = 0. Furthermore, it follows from the fact that the logarithm
is strictly convex that for each s ∈ S and each c(s) > 0 the inequality

log c(s)− log c∗(s) ≥ 1

c(s)
(c(s)− c∗(s)) (49)

holds, with equality precisely when c(s) = c∗(s). Hence h(c) > 0 for all c 6= c∗.
In addition we have ∇h(c) = log c − log c∗ and the Hessian is G(c)γ = γ

c . For
all c and all γ 6= 0 we have γ · G(c)γ =

∑
s∈S γ(s)2/c(s) > 0. We see that the

Hessian is positive definite and h strictly concave. Now we come to a further
corollary of Proposition 5.1.
Corollary 5.2 Under the assumptions of Proposition 5.1 the inequality ∇h(c) ·
f(c) < 0 holds with equality only when f(c) = 0.

From these statements we see that h is monotone decreasing along solutions,
d
dt (h(c(t)) ≤ 0, with equality only when f(c(t)) = 0. It follows that the restric-
tion of h to a stoichiometric class is a Lyapunov function. Hence the stationary
solution is asymptotically stable as a consequence of Theorem 2.1.

The relation to the condition δ = 0 comes through the following statement.
Proposition 5.2 Suppose that the equations for a network under the assump-
tion of mass action have a stationary solution and that the deficiency is zero.
Then the assumptions of Proposition 5.1 are satisfied.
Proof Let c∗ be a stationary solution. Then Ψ(c∗) ∈ ker(Y Ak). Since the
deficiency is zero it follows from Corollary 3.6 that ker(Y Ak) = ker(Ak) and the
result is proved.

To complete the proof of the deficiency zero theorem it remains to prove
the existence of a positive stationary solution for a weakly reversible network
with deficiency zero. Thus we are looking for c∗ with Y AkΨ(c∗) = 0. Since
for networks with deficiency zero ker(Y Ak) = ker(Ak) it suffices to find c∗ with
Ψ(c∗) ∈ ker(Ak).

The transposed matrix Y T satisfies Y T z =
∑
y∈C(y ·z)ωy. The characteristic

functions ωLθ of the linkage classes satisfy ωLθ =
∑
y∈Lθ ωy.

Lemma 5.2 dim[im Y T + span(ωL1 , . . . , ωLl)] = n − δ. In particular, when
δ = 0 the space im Y T + span(ωL1 , . . . , ωLl) is the whole space of functions on
R.
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Proof It follows from Proposition 3.2 that dim[kerY ∩ span(∆)] = δ. Since the
dimension of the whole space is n we can conclude that dim[kerY ∩span(∆)]⊥ =
n− δ. On the other hand

[kerY ∩ span(∆)]⊥ = (kerY )⊥ + (span(∆))⊥. (50)

At the same time (kerY )⊥ = imY T . As a consequence of Lemma 3.9 the space
(span(∆))⊥ is spanned by the ωLθ . Combining these statements gives the first
part of Lemma 5.2. The second part is then clear.
Proposition 5.3 We consider a weakly reversible network and a basis x1, . . . , xl

for kerAk as in Proposition 3.1. Then the following statements are equivalent
(i) there exists a positive function c∗ on S with Ψ(c∗) ∈ kerAk.

(ii) log(
∑l
θ=1 x

θ) is in imY T + span(ωL1 , . . . , ωLl).
Proof Condition (ii) is equivalent to
(iii) there exists a function z on S and numbers {−ξ1, . . . ,−ξl} with the property
that

log(

l∑
θ=1

xθ) = Y T z −
l∑

θ=1

ξθωLθ . (51)

With z and ξθ as in this equation we set c∗ = ez and λθ = eξθ and see that (iii)
is equivalent to
(iv) there exists a positive function c∗ on S and positive constants {λ1, . . . , λl}
with the property that

Y T (log c∗) = log(

l∑
θ=1

xθ) +

l∑
θ=1

(log λθ)ωLθ = log(

l∑
θ=1

λθx
θ). (52)

Now Y T (log c∗) =
∑
y∈C(y · log c∗)ωy and y · log c∗ = log((c∗)y). Together the

last two equations give

Y T (log c∗) =
∑
y∈C

[log(c∗)y]ωy = log(
∑
y∈C

(c∗)yωy) = log Ψ(c∗). (53)

Thus (iv) is equivalent to
(v) there exist a positive function c∗ on S and positive constants {λ1, . . . , λl}
with the property that Ψ(c∗) =

∑l
θ=1 λθx

θ. Since {x1, . . . , xl} is a basis of
kerAk condition (v) implies (i). That (i) implies (v) follows from the nature of
the basis and the fact that Ψ(c∗) is positive for c∗ positive.
Corollary 5.3 For a weakly reversible network of deficiency zero there exists a
positive function c∗ on S with AkΨ(c∗) = 0.
Proof For a network of deficiency zero Lemma 5.2 says that the linear subspace
in (ii) of Proposition 5.3 is the whole space of functions on C. Hence condition
(ii) is satisfied and the equivalent condition (i) as well.

Let us summarize what has been proved. If a network is weakly reversible
and the deficiency of the network is zero then there is a unique stationary solu-
tion c∗ in each stoichiometric compatibility class and all solutions which start
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close enough to c∗ converge to it. What can be said about general positive
solutions in this case? The Lyapunov function h(c) provides information about
this. This function is a sum of non-negative contributions from the different
species, say h(c) =

∑m
i=1 hi(ci), and each function hi is non-negative and posi-

tive for c 6= c∗. Consider the subset defined by h(c) ≤ C for a constant C. Then
hi(ci) ≤ C for all i. Now h′i(ci) = log ci−log c∗i so that hi is monotone increasing
for ci > c∗i and monotone decreasing for ci < c∗i . For ci → 0 the quantity hi(ci)
converges to c∗i and for ci →∞ we have hi(ci) = ci log ci +O(ci). In particular
hi(ci) tends to +∞ for ci →∞. It follows that the inequality hi(ci) ≤ C implies
the boundedness of ci. For systems of this type all solutions exist globally in the
future and are bounded. For systems of deficiency zero which are not weakly
reversible the last statement does not hold. It suffices to consider the simple
reaction 0 → A, which leads to the equation ẋC = k. The solutions are linear
functions which are not bounded.

Now consider once again the case of a weakly reversible network. The Lya-
punov function does not a priori prevent that a positive solution has an ω-limit
point where some concentration vanishes. It does rule out positive ω-limit points
other than c∗. Suppose that a positive solution c(t) has no ω-limit points on the
boundary. Then it converges to c∗, as the following argument shows. Consider
an arbitrary sequence tn with tn → ∞. The sequence c(tn) is bounded and
thus has a convergent subsequence. The limit of this subsequence is an ω-limit
point and can thus only be c∗. Hence c(tn) converges to c∗. The ω-limit set is
connected and so it cannot be that one solution has both c∗ and a point on the
boundary as ω-limit points. Either the solution converges to c∗ or its ω-limit
set is contained in the boundary. In one of the first important papers on this
subject, by Horn and Jackson [16], it was claimed that the second case was im-
possible. Later Horn [17] stated that he had no proof for this fact although he
still expected it would be true. Forty years later there was still no proof known
although the claim, which became known as the ’global attractor conjecture’
was proved under various additional assumptions. At the beginning of 2015 a
paper of Gheorghe Craciun appeared on the Internet where he proposed a proof
[4].

For a network of deficiency zero that is not weakly reversible the Deficiency
Zero Theorem tells us that there are no positive stationary solutions but we
obtain no detailed information about the long-time behaviour of the solution.
It is at least possible to show that there are no positive periodic solutions. Let
c(t) be a periodic solution. Then there exists a T with c(t + T ) = c(t). This
implies that

0 =

∫ t+T

t

ċ(t)dt = (Y Ak)(

∫ t+T

t

Ψ(c(t))dt). (54)

We see that
∫ t+T
t

Ψ(c(t))dt is in the kernel of Y Ak. Since the deficiency is zero
this vector is according to Corollary 3.6 in the kernel of Ak. If there is a positive
vector in the kernel of Ak the network is weakly reversible, contradicting the
assumption that a periodic solution exists.
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6 The Deficiency One Theorem

Now we formulate the Deficiency One Theorem as in [11]. First we need to define
the deficiency of a linkage class. It is defined to be δ = n− 1− s where n is the
number of complexes in the class and s is the dimension of the space which is
spanned by the vectors ωy′−ωy for yy′ in the class. This means that we consider
the linkage class as an independent network and consider its deficiency. If the
rank of the ith class is denoted by si then s ≤

∑
i si. Correspondingly, when

δi is the deficiency of the ith linkage class then δ ≥
∑
i δi. The Deficiency One

Theorem is not only concerned with networks of deficiency one. To understand
this better it is useful to formulate the main assumption of the Deficiency Zero
Theorem in a new way. Instead of requiring that the deficiency of the network
is zero it is possible to require that the deficiency of each linkage class is no
greater than zero and that δ =

∑
i δi. Then this assumption can be generalized

by requiring that the δi are no greater than one.
Theorem 6.1 (The Deficiency One Theorem) Let (S, C,R) be a reaction net-
work with deficiency δ. Let δi, 1 ≤ i ≤ l be the deficiency of the ith linkage
class. Suppose that
(i) δi ≤ 1, 1 ≤ i ≤ l
(ii)

∑l
i=1 δi = δ

(iii) each linkage class of the network contains precisely one terminal strong
strong linkage class
If the system of ordinary differential equations which arises from this network
by applying mass action kinetics has a positive stationary solution then there
is exactly one positive stationary solution in each stoichiometric class. If the
network is weakly reversible then it admits a positive stationary solution.

In networks which satisfy the assumptions of this theorem the deficiency
can be arbitrarily large. On the other hand, not every network of deficiency one
satisfies the assumptions of the theorem. In particular there is the case where
δ = 1 while δi = 0 for all i. When there is only one linkage class assumption
(ii) is automatically satisfied and the deficiency of the network is no larger than
one.

Theorem 6.1 will be proved together with another statement which will now
be formulated.
Theorem 6.2 When a network satisfies the assumptions of Theorem 6.1 and
admits a positive stationary solution c∗ the intersection of the kernel of Df(c∗)
with the stoichiometric class of c∗ consists of the zero vector.

To prove Theorem 6.1 we use the following strategy. It is first shown that
when conditions (i)-(iii) of Theorem 6.1 are satisfied and there exists a positive
stationary solution c∗ then the set of stationary solutions identical to the set
E introduced in Section 4. Then Corollary 4.1 can be applied to show that
there is exactly one positive stationary solution in each stoichiometric class. To
complete the proof of Theorem 6.1 it remains to prove the existence of c∗ in the
weakly reversible case. For a fixed choice of c∗ let κ be the function on R which
is defined by the condition κ(yy′) = kyy′(c

∗)y.
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Proposition 6.1 Suppose that a network is given which satisfies conditions (i)-
(iii) of Theorem 6.1 and let κ be a function on R which satisfies the condition∑

R
κ(yy′)(y′ − y) = 0 (55)

Suppose that F (S) is endowed with a scalar product (not necessarily the stan-
dard one) and let φ : R → R be a function which is continuous and strictly
monotone. A function µ on S satisfies∑

R
κ(yy′)φ(y · µ)(y′ − y) = 0 (56)

precisely when wenn µ is orthogonal to the stoichiometric subspace.
Before we prove Proposition 6.1 we formulate a further statement.

Proposition 6.2 For a reaction network let κ be a function on R which satisfies
the condition ∑

R
κ(yy′)(ωy′ − ωy) = 0 (57)

Suppose that F (S) is equipped with an inner product (which need not be the
standard one) and let φ : R→ R be a function which is continuous and strictly
monotone. If φ is increasing or decreasing then we have the inequaliity∑

R
κ(yy′)φ(y · µ)(y′ − y) · µ ≤ 0 or ≥ 0 respectively (58)

for all µ ∈ F (R). Moreover the following statements are equivalent
(i)
∑
R κ(yy′)φ(y · µ)(y′ − y) · µ = 0

(ii) µ is orthogonal to the stoichiometric subspace
(iii)

∑
R κ(yy′)φ(y · µ)(y′ − y) = 0

Proof We suppose that φ is monotone increasing. The proof for the monotone
decreasing case is similar. Let Φ be a primitive of φ. It follows from the fact
that φ is monotone increasing and with the help of the mean value theorem that
φ(a)(b − a) ≤ Φ(b) − Φ(a) for all a and b in R and equality holds only when
a = b. Together with the positivity of κ this inequality implies that∑

R
κ(yy′)φ(y · µ)(y′ − y) · µ ≤

∑
R
κ(yy′)[Φ(y′ · µ)− Φ(y · µ)] (59)

with equality only when (y′−y) ·µ = 0 for all yy′ ∈ R, i.e. when µ is orthogonal
to the stoichiometric subspace. The right hand side of the inequlity can be
written in the form{∑

R
κ(yy′)(ωy′ − ωy)

}
∗

∑
y′′∈C

Φ(y′′ · µ)

 (60)

where the star denotes the usual inner product in F (C). When the assumption
of the proposition holds then the right hand side of (59) vanishes for all µ.
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This proves the first statement of the proposition and conditions (i) and (ii)
are equivalent. It is clear that (iii) implies (i). It remains to show that (ii)
implies (iii). The assumption of the proposition implies the analogous statement
where the sum is only taken over a given linkage class. This then implies the
corresponding statement where ωy′ −ωy is replaced by y′− y. That (ii) implies
(iii) follows from this observation and the following lemma.
Lemma 6.1 For a reaction network let κ be a function on R which satisfies the
condition ∑

yy′∈Lθ
κ(yy′)(y′ − y) = 0 (61)

for each linkage class Lθ. Suppose that F (S) is equipped with an inner product
(not necessarily the standard one). If µ is orthogonal to the stoichiometric
subspace then for for each function φ : R→ R the equation∑

R
φ(y · µ)κ(yy′)(y′ − y) = 0. (62)

holds.
Proof If µ is orthogonal to the stoichiometric subspace then y ·µ = y′ ·µ always
holds when y and y′ are in the same stoichiometric class. Thus there exist
numbers zθ with the property that y ·µ = zθ for all y ∈ Lθ. Hence the left hand
side of the equation (62) is of the form

l∑
θ=1

φ(zθ)
∑

yy′∈Lθ
κ(yy′)(y′ − y) (63)

The lemma follows.
This means that Proposition 6.2 is also proved.

Lemma 6.2 Consider a reaction network which satisfies condition (ii) in The-
orem 6.1 and a function κ on R for which the equation∑

R
κ(yy′)(y′ − y) = 0 (64)

holds. Suppose that F (S) is equipped with an inner product (not necessarily
the standard one). If µ is orthogonal to the stoichiometric subspace then for
every function φ : R→ R the relation∑

R
κ(yy′)φ(y · µ)(y′ − y) = 0. (65)

holds.
Proof The equation in the assumption can be written in the form

l∑
θ=1

∑
yy′∈Lθ

κ(yy′)(y′ − y) = 0. (66)
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The sum over Lθ lies in the subspace ∆θ, whose dimension is sθ. The stoichio-
metric subspace is the sum of the subspaces ∆θ and the sum is direct precisely
in the case that s =

∑l
θ=1 sθ. The last equation is equivalent to condition (ii)

of Theorem 6.1. Thus the vanishing of the sum in the assumption is equivalent
to the vanishing of the individual summands. Hence Lemma 6.2 follows from
Lemma 6.1. Now we have proved one direction in Proposition 6.1. The proof
of the other direction will be carried out in several steps. First Proposition 6.1
will be formulated in a slightly different language.
Proposition 6.1 (new formulation) Let a reaction network be given which
saisfies the conditions (i)-(iii) of Theorem 6.1 and let κ be a function on R for
which the condition ωC ∈ ker(Y Aκ) holds. Suppose that F (S) is equipped with
an inner product (not necessarily the standard one) and let φ : R → R be a
function which is continuous and strictly monotone. A function µ on S satisfies
the condition

∑
y∈C φ(y · µ)ωy ∈ ker(Y Ak) if and only if µ is orthogonal to the

stoichiometric subspace.
Here ωC denotes the function on C which is identically equal to one. The

quantity Aκ is defined in the same way as the Ak we know already. It is possible
to define an object Aα of this type for any function α ∈ F (R). The analogue
of Proposition 3.1 holds for Aα.
Lemma 6.3 For a reaction network in which each linkage class contains only
one terminal strong linkage class the relation dim(ker(Y Aα)) = δ + l holds for
each α ∈ F (R).
Proof Note first that

dim(ker(Y Aα)) = n− dim(im(Y Aα)) (67)

and imAα = span(∆). The dimension of im(Y Aα) is the rank of the network.
Thus dim(ker(Y Aα)) = n − s. The result follows from the definition of the
deficiency.

For a given network and subsets P , Q of C we denote by P → Q the set of
reactions in R for which the left hand side is in P and the right hand side in Q.
If P ⊂ C the complement of P is denoted by P ′.
Lemma 6.4 Suppose that a reaction network and a function α on C are given.
If x and z are funktions on C which satisfy z = Aαx then for each subset P of
C we have the relation∑

y∈P
z(y) =

∑
P ′→P

αy′yx(y′)−
∑
P→P ′

αyy′x(y). (68)

Proof For each y ∈ C we have

z(y) =
∑
C→{y}

αy′yx(y′)−
∑
{y}→C

αyy′x(y). (69)

If this relation is summed over y ∈ P we get∑
y∈P

z(y) =
∑
C→P

αy′yx(y′)−
∑
P→C

αyy′x(y). (70)
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It is also true that

C → P = {P → P} ∪ {P ′ → P}, P → C = {P → P} ∪ {P → P ′}. (71)

Thus the contributions of the reactions in P → P cancel and the desired relation
is obtained.

Now the remaining part of Proposition 6.1 will be proved in the special case
l = 1. For this the new formulation will be used. In this case the condition (ii)
in Theorem 6.1 is automatically satisfied. Condition (iii) becomes t = 1 and
condition (i) means that the deficiency is zero or one. It is assumed that an
inner product on F (S) and a monotone increasing function φ are given. (The
proof of Proposition 6.1 in the monotone decreasing case is strictly analogous.)
Let us suppose that for a positive function κ on R the condition ωC ∈ ker(Y Aκ)
holds. The aim is to show that µ ∈ F (S) only satisfies the condition∑

y∈C
φ(y · µ)ωy ∈ ker(Y Aκ) (72)

if µ is orthogonal to the stoichiometric subspace. For a network with l = 1 the
condition on µ is equivalent to the condition that y · µ = y′ · µ for all y and y′

in C.
In the case that ωC not only lies in ker(Y Aκ) but also in kerAκ the condition

AκωC =
∑
R
κyy′(ωy′ − ωy) = 0 (73)

holds. It follows that Proposition 6.1 holds in that case. Hence it will now be
supposed that ωC does not lie in kerAκ. In that case ker(Y Aκ) and kerAκ are
not identical and the deficiency must be one. It follows from Lemma 6.3 that
dim ker(Y Aκ) = 2. We now choose a certain basis of ker(Y Aκ). Let b be a
vector in kerAκ which is positive on Λ, the only terminal strong linkage classe,
and vanishes outside Λ. The existence of a vector of this kind follows from
Proposition 3.1 and it is unique according to Lemma 3.6. The vectors b and ωC
are a basis of ker(Y Aκ).

Now suppose that µ satisfies the condition (72). Then there exist numbers
ξ and η such that

∑
y∈C φ(y · µ)ωy = ξωC + ηb. This statement is equivalent

to the statement that φ(y · µ) = ξ + ηb(y) for all y ∈ C. We can conclude that
y ·µ = y′ ·µ if neither y nor y′ is in the terminal strong linkage class. The strict
monotonicity of φ is used to prove this.

The aim is now to show that µ is orthogonal to the stoichiometric subspace
or, in other words, that y · µ = y′ · µ for all y and y′ in C. Since φ is strictly
monotone and thus, in particular, injective it suffices to show that η can only
be zero. This is done by showing that it can neither be positive nor negative.
First arrange the complexes in a sequence y(1), y(2), . . . y(n) so that b(y(1)) ≥
b(y(2)) ≥ . . . b(y(n)). If the number of complexes in the terminal strong linkage
class is p then clearly the first p complexes in the sequence belong to Λ. One of
the inequalities must be strict since otherwise b and ωC would be proportional,
a contradiction.
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If η > 0 then y(1) · µ ≥ y(2) · µ ≥ . . . ≥ y(n) · µ. The strict inequality holds
precisely when the strict inequality holds at the corresponding point in the other
chain of inequalities. When η < 0 we get a similar chain of inequalities in the
other direction. Since ωC is not contained in kerAκ the vector g = AκωC is
not zero. We have g ∈ kerY ∩ span(∆). The relations

∑
y∈C g(y)y = 0 und∑

y∈C g(y) = 0 also hold. From these equations we can also derive the following
relation

g(y(1))(y(1) − y(2)) + (g(y(1)) + g(y(2)))(y(2) − y(3)) + . . .

+

n−1∑
j=1

g(y(j))(y(n−1) − y(n)) = 0. (74)

The left hand side is in fact equal to

(g(y(1))y(1) + . . .+ g(y(n))y(n))− y(n)(g(y(1)) + . . .+ g(y(n))). (75)

Now we take the inner product of this relation with µ, with the result

n−1∑
i=1

(

i∑
j=1

g(y(j)))(y(i) · µ− y(i+1) · µ) (76)

It will be shown that when η is positive then each summand in the outer sum
is non-negative and at least one is positive. It will also be shown that when η
is negative then each summand in the outer sum is non-positive and at least
one is negative. In both cases a contradiction is obtained. To prove the desired
statements the following lemma will be used.
Lemma 6.5 For a reaction network and a positive function κ on R let Aκ be
defined as above. Let Λ be a terminal strong linkage class and b an element
of kerAκ with support Λ. If the complexes are listed in a sequence as above
then for 1 ≤ i ≤ p the inequality

∑j
i=1 g(y(j)) ≥ 0 holds. For 1 ≤ i < p this

inequality is strict when b(y(i)) > b(y(i+1)). When i = m the inequality is strict
when Λ is smaller than the linkage class it is contained in.
Proof Let P be an arbitrary subset of C and P ′ its complement. Since AκωC = g
and Aκb = 0 it follows from Lemma 6.4 that∑
P ′→P

κy′y −
∑
P→P ′

κyy′ =
∑
y∈P

g(y),
∑
P ′→P

κy′yb(y
′)−

∑
P→P ′

κyy′b(y) = 0 (77)

We use this statement in the case P = Λ. Since Λ is terminal there are no
reactions in Λ→ Λ′ and we obtain

∑
Λ′→Λ κy′y =

∑p
j=1 g(y(j)). If Λ is smaller

than the linkage class it is contained in there is at least one non-trivial on the
left hand side and both sides are positive. If Λ is a whole linkage class then
both sides are zero. To prove the remaining part of Lemma 6.5 we choose P as
the set I consisting of the yj with 1 ≤ j ≤ i < p. Using (77) we have

b(yi+1)(
∑
I′→I

κy′y)− b(yi)(
∑
I→I′

κyy′) ≥ 0. (78)
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Since b(yi) > b(yi+1) it follows that
∑
I′→I κy′y −

∑
I→I′ κyy′ ≥ 0. Equality

holds in the inequality only when equality holds in the previous inequality. Thus
the lemma is proved.

For a network with only one linkage class we can now prove that η must
vanish.

Next Proposition 6.1 will be proved for networks with arbitrarily many link-
age classes. A partition of the reaction network (S, C,R) is set of subnetworks
(S, Ci,Ri) mit the property that dass R is the disjoint union of the Ri. The
partition is called direct if the rank of the network is the sum of the ranks of
the subnetworks. If S is the stoichiometric subspace of the network and Si the
stoichiometric subspace of the subnetworks then S is the sum of the Si and
this sum is direct precisely when the partition is direct. The next lemma is a
generalization of Lemma 6.2.
Lemma 6.6 Suppose that a network admits a partition into subnetworks which
each consist of only one linkage class. Let κ be a positive function on R which
satisfies ∑

R
κyy′(y − y′) = 0. (79)

Let an inner product be given on F (S) and let φ : R→ R be a function. Then
a function µ on S satisfies∑

R
κyy′φ(y · µ)(y − y′) = 0 (80)

if it is orthogonal to the stoichiometric.
Proof The sums in the two conditions can be written as a sum over i of sums
over Ri. Because the partition is direct the vanishing of the sum is equivalent
to the vanishing of all summands. If µ is orthogonal to S then y · µ = y′ · µ
whenever y and y′ are in the same linkage class. Since each subnetwork consists
of only one linkage class y · µ = y′ · µ for all y and y′ in Ci. This proves the
lemma.

Proposition 6.1 is a direct consequence of the next Proposition.
Proposition 6.3 Suppose a network (S,R,R) is given which admits a partition
into subnetworks with the properties that
(i) the deficiency of each subnetwork is either zero or one
(ii) the partition is direct
(iii) each subnetwork contains only one terminal strong linkage class
Let κ be a positive function on R which satisfies the condition∑

R
κyy′(y − y′) = 0. (81)

Let a scalar product and a monotone function be given as in previous cases. A
function µ on S satifies ∑

R
κyy′φ(y · µ)(y − y′) = 0 (82)
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if and only if µ is orthogonal to the stoichiometric subspace.
Proof The forward direction follows from Lemma 6.6. For the backwards di-
rection we should first remember that the vanishing of the sums in the two
conditions is equivalent with the vanishing of all summands. If µ is not orthog-
onal to S then there must exist an i for which µ is not orthogonal to Si. The
ith subnetwork only contains one linkage class and satisfies the conditions of
Proposition 6.1. Since Proposition 6.1 was already proved in that case we have
a contradiction.

We must see that Proposition 6.1 follows from Proposition 6.3. This is
achieved by the following lemma
Lemma 6.7 A network which satisfies condition (ii) of Proposition 6.1 admits
a partition into networks each of which has only one linkage class. If in addition
the network satisfies conditions (i) und (iii) of Proposition 6.1 then it admits a
partition which satisfies all conditions of Proposition 6.3.
Proof We take the linkage classes as the Ci and take the reactions from Ci to
itself asRi. When condition (ii) of Proposition 6.1 is satisfied then this partition
is direct. Each subnetwork has only one linkage class. It is then clear that when
the network satisfies conditions (i) and (iii) of Proposition 6.1 this partition has
the desired properties.

The results we have now obtained essentially give the proof of Theorem
6.2. It nevertheless remains to explain what these results have to do with the
derivative of f at the stationary solution. The derivative is given by the formula

Dcf(c∗)γ =
∑
R
κyy′(y · γ)(y′ − y) (83)

where the inner product is defined by

x · z =

m∑
i=1

xizi
c∗i

. (84)

In order to prove Theorem 6.2 it is enough to show that each vector in the kernel
of Dcf is orthogonal to the stoichiometric subspace with respect to the given
inner product. There are statements we have proved which are precisely of this
type. In the present case we choose φ(x) = x. The formula for the derivative
of f can also be used to obtain an interesting conclusion about networks of
deficiency zero. The result can be found in [11] but it does not see to have
attracted much attention in the literature. We consider a network which is
weakly reversible and satisfies δ = 0. It will be shown that the restriction of the
linear mapping Dcf(c∗) to the stoichiometric subspace is negative definite with
respect to the unusual inner product which has already been introduced. This
means that all its eigenvalues have negative real part. The stationary solution
is not only asymptotically stable but also hyperbolic. In Proposition 6.2 we set
κyy′ = kyy′(c

∗)y and φ(x) = x to obtain that γ ·Dcf(c∗)γ ≤ 0 for all γ ∈ F (S)
with equality only when γ ∈ S⊥.

We have also already proved most of Theorem 6.1. It remains to prove the
existence of a positive stationary solution when the network is weakly reversible.
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First we consider the case of a network which has only one linkage class and
satisfies condition (i) of Theorem 6.1. Then the deficiency of the network is zero
or one. We are looking for a positive function c on S which satifies∑

R
kyy′(c)

y(y′ − y) = 0. (85)

This is equivalent to the condition that
∑
y∈C(e

y·log cωy) ∈ kerY Ak. It follows
from Proposition 3.1 that kerY Ak is non-trivial.
Lemma 6.8 The following statements are equivalent
(i) there exists a positive function c on S with

∑
y∈C(e

y·log cωy) ∈ kerY Ak.
(ii) there exists a function z on S, a number ξ and a positive function a ∈ kerY Ak
so that

Y T z + ξωC = log a (86)

Proof First we show that (ii) implies (i). Let z, ξ and a be as in (ii), let c = ez

and let λ = e−ξ. Then

Y T log c = log a+ (log λ)ωC = log(λa). (87)

The function λa is in kerY Ak and Y T (log c) =
∑
y∈C(y · log c)ωy. It follows that

(i) holds. The proof of the other direction is similar.
Thus our problem reduces to show that the set Γ of functions on C of the

form log a with a in kerY Ak intersects the vector space U = imY T + span(ωC).
In the case with one linkage class and δ = 0 the problem is already solved. Thus
we can assume w.l.o.g. that δ = 1. In this case U is according to Lemma 5.2 a
hyperplane in F (C). To show that the connected set Γ intersects the subspace
U it suffices to show that there are elements of Γ on both sides of U .

Let g be a fixed element of the one-dimensional linear subspace U⊥ = kerY ∩
span(∆). It will now be shown that there exist elements γ+ and γ− of Γ with
g · γ+ > 0 and g · γ+ < 0. Because Γ is connected the existence of γ+ and γ−

implies the existence of a γ0 with g · γ0 = 0. Then γ0 is in U .
We examine the convex cone consisting of the positive elements of kerY Ak.

It follows from Lemma 6.3 that dim(kerY Ak) = 2. We can find a basis {p1, p2}
of kerY Ak consisting of non-negative vectors such that the cone consists of those
vectors which can be written in the form λ1p

1+λ2p
2 with λ1 und λ2 positive. p1

und p2 lie in the two extreme rays of the cone. Both of them lie in the boundary
of the positive orthant. Thus there are complexes y and y′ so hat p1(y) = 0 and
p2(y′) = 0.

Since Ak takes values in span(∆) and p1 und p2 are both in kerY Ak it
must be the case that Akp

1 and Akp
2 are in the one-dimensional subspace

(kerY ) ∩ span(∆). Thus there exist numbers ξ1 und ξ2 with the property that
Akp

1 = ξ1g and Akp
2 = ξ2g.

Lemma 6.9 The numbers ξ1 and ξ2 are non-zero and have opposite signs.
Beweis Let x be a positive element of kerAk. Since kerAk is contained in
kerY Ak the special properties of the basis {p1, p2} ensure that there exist posi-
tive numbers λ1 and λ2 so that x = λ1p

1 +λ2p
2. If we apply Ak to this equation
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we get (λ1ξ
1 + λ2ξ

2)g = 0. Since g is not zero and λ1 and λ2 are positive it
must either be the case that ξ1 und ξ2 are both non-zero and have opposite
signs or that both are zero. The second alternative leads to a contradiction.
For the case of a weakly reversible network with one linkage class considered
here Proposition 3.1 implies that kerAk is one-dimensional. If ξ1 and ξ2 were
both zero then p1 and p2 would be proportional. Then they could not be a Basis
of kerY Ak.
Lemma 6.10 Let p be a non-vanishing non-negative function on C whose sup-
port is not the whole of C. Then ωsupp p ·Akp < 0.
Proof Let (supp p)′ be the complement of supp p. We have using Lemma 6.4

ωsupp p ·Akp = −
∑

supp p→(supp p)′

kyy′py. (88)

The sets supp p und (supp p)′ are not empty. Because the network is weakly
reversible and only has one linkage class the set supp p → (supp p)′ is also
non-empty. This proves the lemma.
Lemma 6.11 If p1, p2 und g are as before then ωsupp p1 · g and ωsupp p2 · g are
non-zero and have opposite signs.
Proof From Lemma 6.10 it follows that

ωsupp p1 ·Akp1 = ξ1(ωsupp p1 · g) < 0

ωsupp p2 ·Akp2 = ξ2(ωsupp p2 · g) < 0 (89)

From Lemma 6.9 it follows that ξ1 and ξ2 have opposite, which gives the desired
result.

Now we examine the set Γ. We are interested in the sign of g·log(λ1p
1+λ2p

2)
in its dependence on λ1 and λ2. First we set λ2 = 1 and let λ1 become large.

log(λ1p
1 + λ2p

2) = (log λ1)ωsupp p1 +
∑

y∈supp p1

log(p1(y) + p2(y)/λ2)ωy

+
∑

y∈(supp p1)′

log(p2(y))ωy. (90)

We see that for λ1 large g · log(λ1p
1 + λ2p

2) has the same sign as g · ωsupp p1 .
Interchanging the roles of λ1 and λ2 in this argument gives a similar statement
in the case where λ2 becomes large. From Lemma 6.11 we get
Lemma 6.12 The set Γ contains elements γ+ and γ− with g · γ+ > 0 and
g · γ− < 0.

This completes the proof of the existence of a positive stationary solution in
this case.

Now this result will be extended to certain networks with more than one
linkage class.
Proposition 6.4 Suppose that a network (S, C,R) admits a partition into
subnetworks in such a way that
(i) the deficiency of each subnetwork is either zero or one
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(ii) the partition is direct
(iii) each subnetwork has only one linkage class
Then the system of equations which arises from this network by the assumption
of mass action kinetics has a positive stationary solution.

A weakly reversible network which satisfies the assumptions of Theorem
6.1 admits a partition as in the assumptions of Proposition 6.4. Hence the
proof of Theorem 6.1 will be complete when Proposition 6.4 has been proved.
For the proof of Proposition 6.4 another terminology is necessary. The mass
action system for a subnetwork (S, C′,R′) is obtained by restricting the reaction
constants k of R to R′. The results obtained up to this point show that the
systems which arise from the subnetworks have positive stationary solutions.
Lemma 6.13 Suppose that a network (S, C,R) admits a direct partition into
subnetworks (S, C′,R′) and (S, C′′,R′′) and that there are positive functions c′

and c′′ on S with the property that the sets

{c : log c− log c′ ∈ (S′)⊥},
{c : log c− log c′′ ∈ (S′′)⊥} (91)

consist entirely of stationary solutions of the two subnetworks. Then the network
(S, C,R) also has a positive stationary solution. The exists a positive function
c∗ on S with the property that the set

{c : log c− log c∗ ∈ S⊥} (92)

consists entirely of stationary solutions of the network (S, C,R).
Proof It is not difficult to see that each positive function which is a stationary
solution for the two subnetworks is also a stationary solution for the original
network. Thus we need only show that the two subsets in (91) intersect. The
affine subspaces log c′+(S′)⊥ and log c′′+(S′′)⊥ intersect precisely when log c′−
log c′′ ∈ (S′)⊥ + (S′′)⊥. Note that (S′)⊥ + (S′′)⊥ = (S′ ∩ S′′)⊥. Since the
partition is direct S′ ∩ S′′ = {0} and thus (S′)⊥ + (S′′)⊥ = F (S). Hence
the condition on log c′ − log c′′ is obviously satisfied. Let z be a point of the
intersection and c∗ = ez. The point c∗ is a stationary solution of the original
system. The intersection of the two affine subspaces is log c∗ + [(S′)⊥ ∩ (S′′)⊥].
Hence each point c with log c−log c∗ ∈ (S′)⊥∩(S′′)⊥ is a point of the intersection
and therefore a stationary solution of the original system. On the other hand
(S′)⊥ ∩ (S′′)⊥ = S⊥ and so the lemma is proved.

This lemma gives
Lemma 6.14 Suppose that a network (S, C,R) admits a direct partition into
subnetworks (S, Ci,Ri) and that there exist non-negative functions ci such that
the sets

{c : log c− log ci ∈ (Si)⊥} (93)

consist entirely of stationary solutions of the subnetworks. Then the network
(S, C,R) also a positive stationary solution.
Lemma 6.15 Suppose that a network (S, C,R) admits a direct partition into
subnetworks (S, Ci,Ri) and that each subnetwork consists of a single linkage
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class. Then the system coming from the original network also has a positive
stationary solution.
Proof Let ci be a positive stationary solution of the ith subnetwork. When
considered as an independent network the ith subnetwork admits a positive
stationary solution and therefore, according to Corollary 4.1, the corresponding
subset E meets each stoichiometric compatibility class in precisely one point. It
follows from Lemma 6.6 that E consists of stationary solutions. Hence we know
where the stationary solutions are and Lemma 6.15 follows from 6.14.
Lemma 6.16 In a direct partition of a weakly reversible network each subnet-
work is weakly reversible.
Proof Let yy′ be a reaction in one of the subnetworks. In the original network
there is a directed path from y′ to y. Hence there is a closed path through
y. It follows that there is a set of vectors which are linearly dependent in the
original network. Because the partition is direct the closed path must lie in the
subnetwork.
Proof of Proposition 6.4 The existence of a partition as assumed in the
Proposition implies that each subnetwork is weakly reversible and has deficiency
zero or one and hence it has a positive stationary solution. The Proposition
follows from Lemma 6.15.

Now the results so far will be made more concrete by a few examples. We first
consider the equations of enzyme kinetics which are known from an influential
paper of Michaelis and Menten in 1913. We begin with a simple reaction in
which a substrate S is converted to a product P . If the reaction is catalysed by
another substance (for instance by an enzyme E in biology) then we can extend
this description. It is assumed that the enzyme and the product bind to each
other to form an enzyme-substrate complex S ·E. (The word ’complex’ is used
here in a different sense than the one occurring up to now in this course. When
we use the word in the latter sense we always write enzyme-substrate complex.)
Thus we have a reaction E + S → S · E. The enzyme-substrate complex can
dissociate and release E and S. The reaction is S ·E → E + S. It can however
also happen that within the enzyme-substrate complex a reaction takes place in
which the product is formed. Then the product and the enzyme are released.
This process is described by the reaction S ·E → E+P . These three reactions,
with mass action kinetics are called elementary reactions. We call the whole
description the extended Michaelis-Menten description. This name is supposed
to avoid confusion with another description which plays no role in this course.
In the latter there is only one reaction E → P and the kinetics is different
from mass action. It is often known as Michaelis-Menten kinetics. We call the
second description the effective Michaelis-Menten description. It results from
the extended Michaelis-Menten description through a limiting process.

The equations of the extended Michaelis-Menten description of this single
reaction are

dcS
dt

= −k1cScE + k2cS·E ,

dcE
dt

= −k1cScE + (k2 + k3)cS·E ,
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dcS·E
dt

= k1cScE − (k2 + k3)cS·E ,

dcP
dt

= k3cS·E . (94)

There are four species, three complexes and three reactions. There are two
linkage classes and the rank is two. The stoichiometric classes are the level
surfaces of the conserved quantities cE+cS·E and cS+cS·E+cP . The deficiency
is zero and the network is not weakly reversible. The Deficiency Zero Theorem
shows that there are no positive stationary solutions. This is already obvious
because of the fact that −cP is a Lyapunov function.

We now consider a phosphorylation system. A substance X is given which
can be phosphorylated up to N times. We suppose again that the phosphate
groups are attached in a particular order and removed in the reverse order.
In this way there are compounds Ci with 0 ≤ i ≤ N . In the first section
we considered this system with mass action kinetics. Now we want to assume
instead that each phosphorylation is catalysed by an enzyme E (called a kinase)
and each dephosphorylation by an enzyme F (called a phosphatase). We use an
extended Michaelis-Menten description for each reaction. It is assumed that only
one phosphate group is changed during each binding event between substrate
and enzyme (distributive phosphorylation). The species are then the substrates
Ci with 0 ≤ i ≤ N , the enzymes E and F , the substrate-enzyme complexes
Ci · E with 0 ≤ i ≤ N − 1 and the substrat-enzyme complexes Ci · F with
1 ≤ i ≤ N . We thus have m = 3N + 3. There are 4N + 2 complexes, 6N
reactions and two linkage classes. This system is called the multiple futile cycle
[23]. It satisfies the condition t = l.

Now consider the simple futile cycle, i.e. the case N = 1. In this case we have
m = 6, n = 6, l = 2, s = 3 and δ = 1. The two linkage classes have deficiency
zero. The Deficiency Zero Theorem cannot be useed and the Deficiency One
Theorem is also not applicable because the second condition does not hold. This
system has a unique positive stationary solution in each stoichiometric class and
this solution is globally asymptotically stable in its class. This last statement
is not easy to prove [1]. How is in the case of the dual futile cycle? In this
case we have m = 9, n = 10, l = 2, s = 6 and δ = 2. Both linkage classes
have deficiency zero. In this case too both the Deficiency Zero Theorem and
the Deficiency One Theorem fail to apply. It it known that this system exhibits
multistationarity [23] - in many stoichiometric classes there exists more than
one stationary solution.

A double phosphorylation does not have to be distributive. It could also
be processive. In that case both phosphate groups are attached during one
encounter between the substrate and the enzyme. There is more than one
possibility for a mechanism of this type. Here we consider the following variant
(cf. [3]). The phosphorylation has the mechanism shown in the figure and
the dephosphorylation the strictly analogous one. I this case m = 9, n = 8,
l = 2, s = 5 und δ = 1. Both linkage classes have deficiency zero. There exist
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C0 + E C0 · E C1 · E C2 + E

k1

k2

k3

k4

k5

conserved quantities xE + xC0·E + xC1·E , xF + xC1·F + xC2·F and

xC0 + xC1 + xC2 + xC0·E + xC1·ExC1·F + xC2·F . (95)

Free C1 does not participate in any reactions. Thus it can be left out of descrip-
tion of the system. Then the concentration of C1 can also be removed from the
last conserved quantity.

7 The Deficiency One Algorithm

The Deficiency One Theorem provides results about networks with arbitrar-
ily large deficiency and there are networks with deficiency one for which this
theorem gives no results. Another direction is given by the Deficiency One
Algorithm. This algorithm can be applied to rather general networks of defi-
ciency one. There are, however, some restrictions necessary in order to apply
it. The networks which satisfy these conditions are called regular. We will now
introduce these conditions. The first is
(R1) The reactions of the network are positively dependent, i.e. there exist
positive numbers αij with the property that

∑
R αij(yj − yi) = 0.

This condition is necessary in order that there be a chance of a stationary
solution. For weakly reversible networks it is always satisfied. In a weakly
reversible network there is closed path through any complex. The sum of the
vectors yj −yi for successive reactions in this network is zero. We can then sum
the quantities of this type which come from a set of closed paths whose union
is the whole of C.
(R2) Each linkage class of the network contains precisely one terminal strong
linkage class.

(R2) is precisely condition (iii) of the Deficiency One Theorem. To state the
third condition we need some more terminology. If there is a reaction from y to
y′ und removing the reactions between these complexes increases the number of
linkage classes by one then this reaction is called a cut pair. (In graph theory
this would be called a bridge.) We call a complex terminal when it lies in a
terminal strong linkage class.
(R3) Each pair of terminal complexes which is joined by a reaction is joined by
a cut pair.

A weakly reversible network which satisfies (R3) is reversible.
In [9] Feinberg suggested that networks which do not satisfy condition (R2)

should perhaps not be taken too seriously. The idea is that a network of this type
can be made into one with t = l by complementing each irreversible reaction
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with a reaction in the opposite direction with a very small reaction constant.
This modification could lead to essential changes in the dynamics of the system.
This means that properties which can only occur in system with t < l would
not be structurally stable and might therefore be irrelevant for applications. Es
might also be the case that truly irreversible reactions do not occur in reality. It
is, however, necessary to be careful with arguments of this type. With the same
argument it would be possible to question the significance of networks which
are not weakly reversible. If we consider a system which is not weakly reversible
and has no positive stationary solutions and compare it with a perturbed system
which is weakly reversible and has such solutions we should note that for very
small vlaues of the perturbation parameter the concentrations which occur in the
stationary solutions might be so large or so small that they are not biologically
relevant. In any case, a perturbation of the type just mentioned does not change
the deficiency of the network.

Independently of these aspects of a perturbation process of this kind it is
possible to investigate the mathematical phenomena which occur in this situa-
tion. A simple example is provided by the following network with the reactions
A1 → A2, A1 → A3, A2 + A3 → 2A1 and reactions constants (1, k, 1). It has
two linkage classes and three terminal strong linkage classes. The stoichiometric
subspace is two-dimensional and δ = 1. The evolution equations are

ċ1 = −(k + 1)c1 + 2c2c3,

ċ2 = kc1 − c2c3,
ċ3 = c1 − c2c3 (96)

The quantity c1 + c2 + c3 is conserved. We also have d
dt (c2 − c3) = (k − 1)c1.

Thus for k 6= 1 there exists a Lyapunov function and no positive stationary
solutions. For k = 1 this function is a second conserved quantity and there is
a whole continuum of stationary solutions. They form the set with equation
c1 = c2c3.

In general it is possible to write the right hand side of the evolution equations
in the form

∑n
i=1 c

yi
∑
Ryi→

kij(yj − yi). If we define di =
∑
Ryi→

kij(yj − yi)
then the right hand side is of the form

∑n
i=1 c

yidi. We call the subspace of
F (C) which is spanned by the di the kinetic subspace S′. The vector space
which is spanned by the image of Ψ is the whole of F (C). For if the image of
Ψ were smaller then there would exista generalized polynomial with non-trival
coefficients which vanishes everywhere, a contradiction. Thus S′ = im(Y Ak) =
Y (imAk). This relation may be compared with the relation S = Y (span(∆)).
If imAk = span(∆) then S′ = S. It follows from Corollary 3.3 that t = l is a
sufficient condition for S′ = S. It was shown in the proof of Proposition 3.2
that dimS = n− l − dim((kerY ) ∩ span(∆)). It can be shown in a similar way
that dimS′ = n− t− dim((kerY ) ∩ imAk). It follows that

dimS − dimS′ = t− l − δ + δ′. (97)

This relation allows some conclusions to be drawn. If t − l > 0 and δ < t − l
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then S and S′ are always different. If δ = 0 and hence δ′ = 0 then S′ = S if
and only if t = l.

The derivative ċ is contained in the kinetic subspace. Der kinetic subspace
is contained in the stoichiometric subspace but in general the two are not equal.
The kinetic subspace is always invariant under the time evolution. While the
stoichiometric subspace does not depend on the values of the reaction constants
the kinetic subspace can do so. In the example the di are the vectors

k(ω2 − ω1) + (ω3 − ω1), 0, 0, 2ω1 − (ω2 + ω3), 0. (98)

For k 6= 1 they are a basis of the stoichiometric subspace but for k = 1 they
are linearly dependent and the kinetic subspace is one-dimensional. When the
kinetic subspace is smaller than the stoichiometric subspace and then there is a
stationary solution in one kinetic class which is non-degenrate in this class then
there will also be similar solutions in neighbouring kinetic classes and there will
be a continuum of stationary solutions within the stoichiometric compatibility
class.

A non-empty set A is called absorptive if there is no reaction from a complex
in A to a complex outside A.
Definition 7.1 A confluence vector for a reaction network (S, C,R) is a function
g on C with the properties
(i)
∑
y∈C g(y)y = 0

(ii) for each linkage class L we have
∑
y∈L g(y) = 0

(iii) for each absorptive subset A which is not a union of linkage classes we have∑
y∈L g(y) > 0
When a network is weakly reversible each absorptive set is a union of link-

age classes so that condition (ii) is automatically satisfied. Given a stationary
solution c∗ let

g(y) =
∑
C→y

ky′y(c∗)y
′
−
∑
y→C

kyy′(c
∗)y. (99)

We can consider kyy′(c
∗)y as a current from y to y′ and then g is the net current

flowing into y from all other complexes.
Lemma 7.1 Let (S, C,R) be a network and α ∈ F (R) a solution of∑

R
αyy′(y

′ − y) = 0. (100)

Then g(y) =
∑
C→y αy′y −

∑
y→C αyy′ is a confluence vector.

To prove this lemma we use
Lemma 7.2 Let (S, C,R) be a network and P a subset of C. Then∑

y∈P
g(y) =

∑
P ′→P

αy′y −
∑
P→P ′

αyy′ (101)

The proof is a straightforward calculation. Now Lemma 7.1 can be proved.
The condition (i) follows from the calculation

0 =
∑
R
αyy′(y

′ − y) =
∑
y∈C

(
∑
C→y

αy′y −
∑
y→C

αyy′)y =
∑
y∈C

g(y)y (102)
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The condition (ii) is obtained by setting P = L in Lemma 7.2 and using the fact
that in this case both sums are empty. To obtain condition (iii) use Lemma 7.2
with P = A. In this case one sum is zero and the other positive.

In what follows we are interested in positive confluence vectors.
Lemma 7.3 For a reaction network the set of elements of F (C) which satisfy
conditions (i) and (ii) in the definition of a confluence vector is a linear subspace
of dimension δ.
Proof g can be written in the form

∑
y g(y)ωy. Condition (i) says that g is

in kerY . Condition (ii) says that g ∈ span∆. The desired subspace is then
(kerY ) ∩ (span∆) and from Proposition 3.2 we know its dimension.

When the network is weakly reversible condition (iii) is automatically sat-
isfied. The subspace just discussed is equal to the set of confluence vectors. If
in addition the deficiency is positive there are non-vanishing confluence vectors.
When the network is not weakly reversible but it has the property (R1) it follows
from Lemma 7.1 that a confluence vector exists which cannot be zero.
Definition 7.2 Two non-vanishing confluence vectors g and g′ for network
are similarly oriented if there exists a positive number λ with g′ = λg. The
equivalence classes which are defined by the corresponding equivalence relation
are called confluence vector orientations.

Here we are interested in regular networks of deficiency one. For networks
of this kind non-zero confluence vectors always exist. In this case all confluence
vectors are proportional. When the network is not weakly reversible there is
only one confluence vector orientation. When the network is weakly reversible
there are two.
Lemma 7.4 If g is a confluence vector then there exists a positive function α
which is related to g as in Lemma 7.1.
Proof Suppose that the network is not weakly reversible. Since it is regular
there exists an α∗ ∈ F (R) with∑

R
α∗yy′(y

′ − y) = 0. (103)

It follows from Lemma 7.1 that g∗ defined by

g∗(y) =
∑
C→y

α∗yy′ −
∑
y→C

α∗y′y (104)

is a confluence vector. Neither g nor g∗ is zero. Because the network satisfies
δ = 1 they must be proportional. At the same time there exists only one
confluence vector orientation, so that g = ρg∗ for a positive number ρ. α = ρα∗

has the desired properties. Now suppose instead that the network is weakly
reversible. It follows from the arguments in the proof of Lemma 7.3 that g ∈
(kerY ) ∩ (span(∆)). Because g ∈ span(∆) there exists ξ ∈ F (R) with g =∑
yy′∈R ξyy′(ωy′ − ωy). Hence for each number p we have the relation

g =
∑
yy′∈R

(ξyy′ + p)(ωy′ − ωy). (105)
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By choosing p sufficiently large it can be ensured that the coefficients in this
relation are all positive. Thus there exists a positive function α with g =∑
yy′∈R αyy′(ωy′ − ωy). If Y is applied to both sides of this equation the first

equation of Lemma 7.1. In addition the relation

g =
∑
yy′∈C

(
∑
C→y

αy′y −
∑
y→C

αyy′)ωy (106)

holds and this gives the second equation of Lemma 7.1
A complex y is called reactive if there is a another complex y′ with the

property that there is a reaction from y to y′. (A complex can only fail to be
reactive if it is the only complex in a terminal strong linkage class.) A terminal
strong linkage class is called non-trivial if it contains more than one complex.
Definition 7.3 An upper-middle-lower partition of a network is a partition of
its reactive complexes into three parts U , M und L called the upper, middle
and lower parts with the properties that
(i) all non-terminal complexes are in M
(ii) all complexes in the same non-trivial terminal linkage class are in the same
part

It is allowed that U and L are empty. Also when all complexes are terminal
(i.e. the network is weakly reversible) then M is empty.

We now consider a network with a fixed choice of P = {U,M,L} and conflu-
ence vector orientation G. For choice of this kind there exist certain inequalities
which play an important role in the Deficiency One Algorithm. The inequalities
concern variables µs, s ∈ S or, in an equivalent formulation, a vector µ ∈ F (S).
Linear forms in the set {y · µ : y ∈ C, y reactive} are subjected to relations >,
< or =. The inequalities are fixed by three rules.
Rule 1. When y and y′ are in M then µ ∈ F (S) must satisfy y · µ = y′ · µ.

A complex in U is said to be above complexes in M and L and a complex
in M is said to be above one in L.
Rule 2. If y is above y′ then y · µ > y′ · µ.

If yy′ is a cut pair then the network obtained by removing the reactions
between y and y′ from the linkage class containing y and y′ is the union of two
subsets W(y) and W(y′) so that the reactions between y and y′ are the only
direct link between the two. For a confluence vector g we define [g, yy′, y] to be∑
ȳ∈W(y) gȳ. We have [g, yy′, y′] = −[g, yy′, y].

Rule 3. If y and y′ are adjacent terminal complexes then
(i) for yy′ ∈ U , µ ∈ F (S) the sign of y ·µ− y′ ·µ is the same as that of [g, yy′, y]
(ii) for yy′ ∈ L, µ ∈ F (S) the sign of y ·µ− y′ ·µ is opposite to that of [g, yy′, y]
Lemma 7.5 For a network (S, C,R) let α be a positive function on R and g
the corresponding confluence vector. Let yy′ be a cut pair. If there is a reaction
from y′ to y then αyy′ − αy′y = [g, yy′, y′]. If there is no reaction from y′ to y
then αyy′ = [g, yy′, y′].
Proof We consider the setsW(y) andW(y′). yy′ is the only reaction inW(y)→
(W(y))′. The set (W(y))′ →W(y) contains only the reaction yy′ if there is this
reaction is in R and is empty otherwise. The result follows from Lemma 7.2.
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Theorem 7.1 Let (S, C,R) be a regular network of deficiency one and c∗ and
c∗∗ distinct positive points in a stoichiometric compatibility class. Then the
following statements are equivalent
(i) there exist positive reaction constants such that the corresponding network
with mass action kinetics has c∗ and c∗∗ as stationary solutions.
(ii) there exists a confluence vector orientation G and a partition P = (U,M,L)
with the property that µ = log c∗∗

c∗ satisfies the inequalities for (P,G).
For a network with m non-trivial terminal strong linkage classes there are

3m (in the non-weakly reversible case) or 2 · 3m (in the weakly reversible case)
systems of linear inequalities which must be analysed during the application of
this theorem.

Before continuing with the general theory and, in particular, before giving
the proof of the theorem it will be shown how this theorem can be applied in
an example. This is the system for processive double phosphorylation. This
network satisfies condition (R1). For example, it is possible in the case of
reversible reactions to choose αij = 2 for the forward reaction and αij = 1 for
the backward reaction. For the irreversible reactions αij is chosen to be one.
Condition (R2) is obviously satisfied in this example. Since in this network each
terminal strong linkage class consists of one complex (R3) is also satisfied. The
network is regular. Since no terminal complex is reactive in this network there
is only one partition (U,M,L) where all reactive complexes are in M . In this
case Rules 2. and 3. give no restrictions. We only have to examine Rule 1.
According to this rule the following relations hold

µC0
+ µE = µC0·E = µC1·E = µC2

+ µF = µC1·F = µC2·F . (107)

Call the common value of these quantities A. If we apply the exponential
function to these relations we get

eµC0 eµE = eµC0·E = eµC1·E = eµC2 eµF = eµC1·F = eµC2·F = eA. (108)

For two solutions in a stoichiometric comaptibility class the conserved quantities
are equal. Consider the quantity cE + (cC0·E + cC1·E). If A is positive then the
quantity in brackets will increase when passing from c∗ to c∗∗. Hence cE must
decrease. The inequality µE < 0 must hold and therefore µC0

> 0. For similar
reasons µF < 0 and µC2 > 0. Together these facts imply that the total amount of
substrate increases, a contradiction. Hence A cannot be positive. The attempt
to make A negative also leads to a contradiction. Hence A = 0. We then see
that some of the µi are obviously zero. Looking again at the total amounts
of the enzymes E and F shows that µE = 0 and µF = 0. It is possible to
conclude from this that µC0

and µC2
vanish. Applying Theorem 7.1 we see that

it is not possible for this system one stoichiometric compatibility class contains
more than one stationary solution.

Theorem 7.1 does not answer the question whether the system admits even
one positive stationary solution. Because of the conserved quantities all solu-
tions are bounded and reamins in an invariant subset of its stoichiometric class
which is homeomorphic to a closed ball in a Euclidean space. Hence a general
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theorem [15] implies the existence of a stationary solution. It says nothing about
whether this solution is positive. If the existence of a stationary solution on the
boundary can be excluded then in this situation the existence of a positive sta-
tionary solution is guaranteed. We consider a stoichiometric class for which the
three conservation laws are positive. We choose a fixed non-negative function
c ∈ F (S). Suppose that this point is either a stationary solution or an ω limit
point of a positive solution. We say that a complex is switched on in this config-
uration if Φ(c)(y) > 0. Otherwise we say that the complex is switched off. The
complex y is switched off precisely when an least one of the species involved in y
is not in the support of c. Now consider a reaction from y to y′. If y′ is switched
off then at least one of the species involved in y′ must have concentration zero
in the given configuration. Hence reactions for which y′ is on the left hand side
make no contribution to the time derivative of this concentration. But then the
reaction from y to y′ cannot make a contribution. For otherwise for a solution
with ci(t1) = 0 the inequality ċi(t1) > 0 would hold and c(t) would have been
negative for t a little less than t1, a contradiction. We conclude that y is also
switched off. This statement implies conditions on the set of complexes in C
which are switched off. In particular it can be seen that this set is a union of
strong linkage classes.

We now come back to the question, whether the system for processive phos-
phorylation has stationary solutions on the boundary of the positive orthant for
which all conserved quantities are positive. The system has only four strong
linkage classes. Suppose first that the class which contains C0 ·E is switched off
at the stationary solution. Then the complexes C0 + E, C0 · E and C1 · E are
switched off. Since the total amount of the enzyme E is positive the amount of
free enzyme E must be positive. Thus the concentration of C0 is zero. Then
C0 + F is switched off and and the class which contains C0 + F is switched off.
Since the total amount of substrate is positive the concentration of C2 must be
positive. This means that the concentration of all substances which contain F
must be zero. It follows that the total amount of F is zero, a contradiction.
It has now been shown that the class which contains C0 · E is turned on. On
symmetry grounds the same is true of the class which contains C2 ·F . Thus all
classes must be switched on. This proves the existence of a positive stationary
solution.
Definition 7.4 In a reaction network (S, C,R) a function x on S is sign com-
patible with the stoichiometric subspace S if there is an element σ ∈ S with the
property that x(s) has the same sign as σ(s) for all s ∈ S.

An equivalent formulation of this property is that there is a positive function
p on S with x = pσ.
Lemma 7.6 Let (S, C,R) be a reaction network. If c∗ and c∗∗ are positive
functions on S which are in the same stoichiometric compatibility class then
µ = log(c∗∗/c∗) is sign compatible with the stoichiometric subspace. Conversely,
if µ is sign compatible with the stoichiometric subspace then there exist positive
functions c∗ and c∗∗ in the same stoichiometric compatibility class with µ =
log(c∗∗/c∗).
Proof Suppose that c∗ und c∗∗ are in the same stoichiometric compatibility
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class. Then c∗∗ − c∗ ∈ S. If we define µ = log(c∗∗/c∗) then µ(s) has the
same sign as c∗∗(s) − c∗(s) for all s ∈ S. Hence µ is sign compatible with the
stoichiometric subspace. Conversely, suppose that µ is sign compatible with the
stoichiometric subspace. Then there exist a σ ∈ S and a positive function p on
S with µ = pσ. Let c∗ = p and c∗∗ = peµ. Then the relations µ = log(c∗∗/c∗)
and c∗∗ − c∗ = p(eµ − 1) hold. If c∗(s) and c∗∗(s) are equal then c∗∗ − c∗ = σ
at the point s. If c∗∗(s)− c∗(s) 6= 0 then we can multiply c∗(s) and c∗∗(s) with
the positive factor [p(s)(eµ(s)− 1)]−1σ(s). Then the first relation is unchanged
and in the second the right hand side is replaced by σ. After the rescaling c∗

and c∗∗ belong to the same stoichiometric compatibility class.
Corollary 7.1 For a regular network (S, C,R) with deficiency one the following
conditions are equivalent
(i) there are positive reaction constants such that the corresponding system
with mass action kinetics has two distinct positive stationary solutions in a
stoichiometric class.
(ii) for a confluence vector orientation G and a partition P = (U,M,L) the
system of inequalities correspondoing to the pair (P,G) has a non-zero solution
which is sign compatible with the stoichiometric subspace.

We say that a partition P ′ = (U ′,M ′, L′) is the inversion of the partition
P = (U,M,L) if U ′ = L, M ′ = M and L′ = U . In this case the system of
inequalities corresponding to P ′ coincides with that corresponding to P up to
the fact that all signs are reversed. Thus µ is a solution in the first case precisely
when −µ is a solution in the second case. So it makes no sense to investigate
the inversion of a partition P if P has already been analysed.

If a system is given where measurements are available for two different sta-
tionary states but where the reaction network is not known it is possible to use
these ideas to test whether a certain network is consistent with the observations
by comparing concentrations in the two different states.

Theorem 7.1 provides a criterion for the existence of two distinct station-
ary solutions. The next theorem gives a similar criterion for the existence of
a degenerate stationary solution, i. e. a stationary solution where the restric-
tion of the derivative of the right hand side of the evolution equations to the
stoichiometric subspace has a non-trivial kernel.
Theorem 7.2 For a regular reaction network (S, C,R) with deficiency one let
c∗ be a positive function on S and γ 6= 0 a point of the stoichiometric subspace.
Then the following statements are equivalent.
(i) there exist reaction constants for which the corresponding system with mass
action kinetics admits c∗ as a solution for which Dcf(c∗)γ = 0.
(ii) there exists a confluence vector orientation G and a partition P = (U,M,L)
with the property that γ/c∗ satisfies the system of inequalities corresponding to
(P,G)
Lemma 7.7 Let (S, C,R) be a reaction network and c∗, c∗∗ positive functions
on S. Then the following conditions are equivalent.
(i) there exist reaction constants for which the mass action system has c∗ and
c∗∗ as stationary solutions.
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(i)’ there exists a positive function κ on R with the property that∑
yy′∈R

κyy′(y
′ − y) = 0 (109)

and ∑
yy′∈R

κyy′e
y·µ(y′ − y) = 0 (110)

where µ = log(c∗∗/c∗).
Proof Suppose that (i) holds. To say that c∗ und c∗∗ are stationary solutions
is to say that ∑

yy′∈R
kyy′(c

∗)y(y′ − y) = 0 (111)

and ∑
yy′∈R

kyy′(c
∗∗)y(y′ − y) = 0. (112)

If κyy′ = kyy′(c
∗)y and µ is defined as above then the two equations in (i)’ hold.

Conversely, if (i)’ holds then we can choose kyy′ such that κyy′ = kyy′(c
∗)y and

then (i) follows.
The next lemma is a similar reformulation of (i) in Theorem 7.2.

Lemma 7.8 Let (S, C,R) be a reaction network, c∗ a positive function on S
and γ a function on S. Then the following statements are equivalent.
(i) there exist reaction constants for which the corresponding system with mass
action kinetics has c∗ as a stationary solution for which Dcf(c∗)γ = 0.
(i)’ there exists a positive function κ on R with the property that∑

yy′∈R
κyy′(y

′ − y) = 0 (113)

and ∑
yy′∈R

κyy′φ(y·)µ(y′ − y) = 0 (114)

where µ = γ/c∗.
Proof Suppose that (i) holds. If c∗ is a stationary solution then∑

yy′∈R
kyy′(c

∗)y(y′ − y) = 0. (115)

In addition the condition on the derivative is equivalent to the condition that∑
yy′∈R

kyy′(c
∗)y(y · (γ/c∗))(y′ − y) = 0. (116)

Statement (i)’ follows if we set κyy′ = kyy′(c
∗)y. For the converse we only need

so choose kyy′ so that this last relation holds.
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Using Lemma 7.7 and Lemma 7.8 we see that Theorem 7.1 and Theorem 7.2
are consequences of
Proposition 7.1 Let (S, C,R) be a regular reaction network with deficiency
one, φ : R → R a continuous montonically increasing function and µ a non-
vanishing function on R which is sign compatible with the stoichiometric sub-
space. Then the following conditions are equivalent.
(i) there exists a positive function κyy′ on R with∑

yy′∈R
κyy′(y

′ − y) = 0 (117)

and ∑
yy′∈R

κyy′y · µ(y′ − y) = 0 (118)

(ii) there exists a confluence vector orientation G and a partition P = (U,M,L)
with the property that µ satisfies the system of inequalities corresponding to
the pair (G,P ).

To see that Theorem 7.1 follows from Proposition 7.1 choose µ = log(c∗∗/c∗)
and φ(x) = ex and apply Lemma 7.7. To see that Theorem 7.2 follows from
Proposition 7.1 choose µ = γ/c∗ and φ(x) = x and apply Lemma 7.8.

Now Proposition 7.1 will be proved, first that (i) implies (ii). The equations
in (i) are equivalent to

Y AκωC = 0 (119)

and
Y Aκ(

∑
y∈C

φ(y · µ)ωy) = 0. (120)

In other words (i) is equivalent to statements ωC ∈ ker(Y Aκ) and
∑
y∈C φ(y ·

µ)ωy ∈ ker(Y Aκ). Since the network is regular and δ = 1 it follows from
Lemma 6.3 that dim(ker(Y Aκ)) = 1 + l. We choose a basis of the kernel of Aκ
as in Proposition 3.1 and call it b1, . . . , bl. (Since the network is regular t = l.)
Provided ωC does not lie in the space spanned by b1, . . . , bl then (ωC , b

1, . . . , bl)
is a basis of the kernel of Y Aκ. If this condition does not hold then ωC is
in kerAκ. According to Proposition 6.1 in this case µ must be orthogonal to
the stoichiometric subspace. Since by hypothesis µ is sign compatible with the
stoichiometric subspace we get a contradiction. Hence in fact we get a basis.
Thus there are numbers λ0, λ1, . . . , λl with∑

y∈C
φ(y · µ)ωy = λ0ωC + λ1b

1 + . . .+ λlb
l. (121)

Let U be the union of the non-trivial linkage classes Λθ for which λθ > 0, L
the corresponding set with λθ < 0 and M the set of reactive complexes which
are neither in U nor in L. M is the union of the nontrivial terminal linkage
classes Λθ with λθ = 0 and the set of non-terminal complexes. The sets U , M
and L satisfy the conditions for an upper-middle-lower partition (U,M,L). Let
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g = AκωC =
∑
R κyy′(ωy′ − ωy). Since ωC is not in the kernel of Aκ the vector

g is not zero. We have g(y) =
∑
C→y κyy′ −

∑
y→C κy′y. It follows from Lemma

7.1 that g is a confluence vector. Let G be the corresponding confluence vector
orientation. It will now be shown that the inequalities corresponding to the pair
(G,P ) are satisfied. To do this we must check the three rules.

To see that Rule 1. is satisfied we note that the properties of the basis
imply that φ(y · µ) = λ0 for all y ∈ M . If y and y′ are in M then the strict
monotonicity of φ implies that y ·µ = y′ ·µ. To check the validity of Rule 2. let
yU , yM and yL be complexes in the corresponding subsets. Let yU and yL be
members of the terminal strong linkage classes Λ1 and Λ2. The the properties
of the basis imply that

φ(yU · µ) = λ0 + λ1b
1(yU ),

φ(yM · µ) = λ0,

φ(yL · µ) = λ0 + λ2b
2(yL). (122)

Since λ1 > 0, λ2 < 0 and φ is monotonically increasing it follows that yU · µ >
yM · µ > yL · µ. It remains to show that Rule 3. holds. Let y and y′ be
adjacent complexes in the terminal strong linkage class Λθ. In this case yy′

and y′y belong to R because of (R3). We have φ(y · µ) = λ0 + λθb
θ(y) and

φ(y′ ·µ) = λ0 +λθb
θ(y′). Suppose that y and y′ are in U so that λθ > 0. In this

case it follows from the montonicity of φ that y · µ − y′ · µ and bθ(y) − bθ(y′)
have the same sign. If on the other hand y and y′ are in L then these quantities
have opposite signs. Hence in order to show that µ satisfies Rule 3. it must be
shown that bθ(y)− bθ(y′) has the same sign as [g, yy′, y]. The reaction yy′ is a
cut pair and we can define sets W(y) and W(y′) as above.

[g, yy′, y] =
∑

ȳ∈W(y)

g(ȳ) =
∑

W(y)′→W(y)

κȳ′ȳ −
∑

W(y)→W(y)′

κȳȳ′ . (123)

The last equality follows from Lemma 6.4. Since yy′ and y′y are the only
reactions in W(y)′ → W(y) and W(y) → W(y)′, respectively, the equation
simplifies to

[g, yy′, y] = κy′y − κyy′ . (124)

Moreover, since bθ is in the kernel of Aκ it follows with the help of Lemma 6.4
that ∑

W(y)′→W(y)

κȳ′ȳb
θ(ȳ′)−

∑
W(y)→W(y)′

κȳȳ′b
θ(ȳ) = 0 (125)

and
κy′yb

θ(y′)− κyy′bθ(y) = 0. (126)

Hence, since κy′y and κyy′ are positive, bθ(y) − bθ(y′) and [g, yy′, y] have the
same sign. This completes the proof of (ii).

Suppose conversely that (ii) holds. Then there exists a confluence vector
orientation G and a partition (U,M,L) such that µ satisfies the corresponding
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inequalities and we are looking for a positive function κ on C with certain prop-
erties. Let g be a non-vanishing element of G. It follows from Lemma 7.4 that
there exists a positive functionα on C with the properties that∑

R
αyy′(y

′ − y) = 0, (127)

g(y) =
∑
C→y

αy′y −
∑
y→C

αyy′ . (128)

Let y∗y∗∗ and y∗∗y∗ be a pair of reversible reactions. Then the first equation
can be written in the form

(αy∗y∗∗ − αy∗∗y∗)(y∗∗ − y∗) +
∑

R\{y∗y∗∗,y∗∗y∗}

(y′ − y) = 0 (129)

It follows that if βyy′ = αyy′ for all reaktions except those between y∗ and y∗∗

and βy∗y∗∗ − βy∗∗y∗ = αy∗y∗∗ − αy∗∗y∗ then
∑
R βyy′(y

′ − y) = 0. If y∗y∗∗ is a
cut pair then it is also true that αy∗y∗∗ − αy∗∗y∗ = [g, y∗y∗∗, y∗∗].

Now κ will be constructed. If in the partition (U,M,L) the set M is not
empty let η = y · µ for y ∈ M . If, on the other hand M is empty then let η
be any number between the minimum of y · µ on U and the maximum of y · µ
on L. The function κ is defined as follows. If yy′ is irreversible or when yy′

is reversible and y′ · µ = y · µ then let κyy′ = αyy′ . If yy′ is reversible and
y′ · µ 6= y · µ (which implies that yy′ is a cut pair which lies in U or L) let

κyy′ = [g, yy′, y′]
φ(y′ · µ)− φ(η)

φ(y′ · µ)− φ(y · µ)
, (130)

κy′y = [g, yy′, y′]
φ(y · µ)− φ(η)

φ(y′ · µ)− φ(y · µ)
. (131)

That κyy′ and κy′y are positive follows from the definition of µ and the inequal-
ities corresponding to the partition (U,M,L) and G. These numbers satisfy the
relations κyy′ − κy′y = [g, yy′, y′] Hence with the help of Lemma 7.5 we can
replace the difference of coefficients κ by a difference of coefficients α. It follows
that

∑
R κyy′(y

′ − y) = 0. Thus the first equation of (i) holds.
To show that the second equation holds we consider the following three

subsets of R. R1 consists of the reactions yy′ with y ∈ M . R2 consists of the
reactions yy′ with y 6= M for which y · µ = y′ · µ. R3 consists of the reactions
yy′ with y 6= M for which y · µ 6= y′ · µ. These subsets are disjoint and their
union is R. Each reaction in R2 or R3 is reversible as a consequence of (R3).
Hence we can always make a choice of forward and backward reactions. The
sets of reactions in R2 and R3 which were chosen to be forwards are denoted
by F2 and F3. Note that∑

R
κyy′φ(y · µ)(y′ − y) = φ(η)

∑
R1

κyy′(y
′ − y)

+
∑
F2

φ(y · µ)(κyy′ − κy′y)(y′ − y)
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+
∑
F3

(κyy′φ(y · µ)− κy′yφ(y′ · µ))(y′ − y) (132)

For yy′ ∈ F2 we have

κyy′ − κy′y = αyy′ − αy′y = [g, yy′, y′]. (133)

Moreover yy′ is inF2 iff [g, yy′, y′] = 0. Hence κyy′ − κy′y = 0 for all yy′ ∈ F2.
It is also the case that for yy′ ∈ F3 we have

κyy′φ(y · µ)− κy′yφ(y′ · µ) = φ(η)(κyy′ − κy′y). (134)

Combining these relations gives∑
R
κyy′φ(y · µ)(y′ − y)

= φ(η)

[∑
R1

κyy′(y
′ − y) +

∑
F2

(κyy′ − κy′y)(y′ − y) +
∑
F3

(κyy′ − κy′y)(y′ − y)

]
= φ(η)

∑
R
κyy′(y

′ − y) = 0. (135)

This proves the second equation.

8 Elementary flux modes

The deficiency one algorithm often gives good results for networks of deficiency
one but what can be done when a network is given which has a deficiency
greater than one? One possibility is the method of elementary flux modes which
produces smaller networks of deficiency one out of a given network. Provided
these networks satisfy the condition t = l they are always regular and it is
possible to apply the deficiency one algorithm to them. If the smaller networks
exhibit multistationarity then it is possible to conclude unter certain conditions
that the original network also does so. On the other hand the converse statement
is not always true.

The condition for a stationary solution can be written in the form Nv(c) = 0.
The vector v(c) of reaction rates is positive. The intersection of the kernel of
N with the non-negative orthant is a cone. For a positive stationary solution c
the vector v(c) lies in the interior of this cone. The points of such a cone can be
written as linear combinations with non-negative coefficients of a finite number
of vectors which lie in the boundary of the positive orthant ([20], Theorem 19.1).
The points of the cone can be regarded as flux distributions. In the case of the
cone we are considering here these vectors are called elementary flux modes. It
can be shown that the elementary flux modes are precisely the vectors in the
cone which have a maximal number of vanishing components. Thus these are
the vectors which satisfy two conditions.
(i) NEi = 0 and Ei is non-negative
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(ii) if there is another vector Ej which satisfies (i) and whose support is contained
in that of Ei then either Ej = 0 or Ej = αEi
We call Ei the generators of the cone.

The generators have an interesting interpretation in terms of the reactions.
The components which are non-zero correspond to active reactions and the
others correspond to inactive reactions. In this sense each generator defines
a subnetwork of the original network consisting of the active reactions. It is
possible to distinguish between generators which are in the kernel of Ia and
those which are not. The latter are called stoichiometric generators.

If we start form one network and consider a subnetwork then the quantities
which have to do with the original network are denoted by symbols with a hat,
for instance Îa, Ê (for the generator). Both networks have the same complexes
and Y is used for both. Let r̂ be the number of reactions in the original network
and r the number of reactions in the subnetwork. Let E be the vector which
results from Ê by leaving out the vanishing components. Then E is positive
and Y IaE = 0 and IaE 6= 0. Let n̂, n, l̂ and l be the numbers of complexes and
linkage classes of both networks.

It turns out that the subnetworks which arise in this way always satisfy δ = 1
and that provided they satisfy the condition t = l they are also regular. Hence
this one condition suffices to ensure that the Deficiency One Algorithm can be
applied to the subnetworks. This statement will now be proved.
Lemma 8.1 Let Ia be the matrix which is defined by a network with n com-
plexes and l linkage classes. Then the rank of Ia is n− l.
Beweis This is a slightly altered form of Lemma 3.8.
Lemma 8.2 Let Ê be a stoichiometric generator of a network. Then the fol-
lowing statements hold.
(i) E is a generator of ker(Y Ia)∩Rr+ and is the only such generator. This means
that this space is spanned by E.
(ii) dim ker(Y Ia) = 1.
(iii) Ia has maximal column rank.
(iv) Ia has n− l columns.
(v) The rank of Y Ia is n− l − 1
Proof (i) let E0 be a non-vanishing generator. Since E is positive the support
of E0 is contained in that of E. Let Ê0 be the vector in Rr̂ which is obtained by
completing E0 with zeroes. Then Y ÎaÊ0 = 0 and the support of Ê0 is contained
in that of Ê. Since Ê is a generator we conclude that Ê0 = αÊ for a positive
constant α and hence that E0 = αE. It follows that E is a generator. This
argument also shows that E is the only generator.
(ii) Let E0 6= 0 be a vector in Rr which is not proportional to E and which
satisfies the equation Y IaE0 = 0. It follows from (i) that E0 has negative
components. For this reason E0 cannot be a generator. To prove this consider
Ẽ = αE +E0. Then Ẽ is positive for α sufficiently large and it follows from (i)
that Ẽ = βE for a constant β, a contradiction.
(iii) If the column rank of Ia was not maximal then there would exist a non-
trivial vector in the kernel of Ia which would then also be in the kernel of
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Y Ia. According to (ii) this vector is proportional to E and this leads to a
contradiction.
(iv) According to Lemma 8.1 the matrix Ia has rank n− l. But Ia has maximal
column rank. Hence Ia has the claimed number of columns.
(v) For a matrix A the dimension dim kerA is the difference of the dimension
of the domain and the rank of A. Hence the dimension of Y Ia is n− l − 1 as a
consequence of (ii).

In general the subnetwork which is defined by Ê contains l linkage classes.
Let Ji be the set of indices which belong to the linkage class i. Each linkage
class can be considered as a network in its own right with corresponding matrix
IJia . This matrix consists of the columns of Ia which belong to Ji.
Corollary 8.1 Let nJi be the number of complexes in Ji. Then the rank of
Y IJia is nJi − 1.
Proof According to Lemma 8.1 the rank of IJia is nJi − 1. Lemma 8.2 implies
that Y IJia has maximal rank and the result follows.
Corollary 8.2 For a subnetwork with l linkage classes which is defined by a
stoichiometric generator Ê the deficiency of the network is one. The deficiency
of each linkage class is zero.
Proof The first statement follows from part (v) of Lemma 8.2. The second
follows from Corollary 8.1.

We have now shown that the subnetworks which are defined by stoichio-
metric generators have deficiency one. It will now be investigated under what
circumstances the subnetworks satisfy the hypotheses of the Deficiency One Al-
gorithm. Condition (R1) can be expressed by saying that there is a positive
vector in the kernel of Y Ia. According to Lemma 8.2 this condition holds. (R3)
is equivalent to the condition that that the terminal strong linkage classes con-
tain no closed loops. This statement follows from the fact that the rank of Ia is
maximal. Only (R2) remains open and it must be checked in each application.

The next goal is to to obtain conditions which ensure that multistationarity
in a subnetwork, which might be obtained be means of the deficiency one algo-
rithm, implies the same condition for the original network. This is done using
the implicit function theorem and it is necessary to check that certain linear
mapping have full rank. We consider a network with ρ reactions and a stoichio-
metric generator Ê. The reaction constants define a function k on Rρ. Let k̂E
be the restriction of k to the support of E and k̂C = k − kE the restriction to
the complement of E. The evolution equations are

ċ = Nv(k̂E , c) +Nv(k̂C , c) (136)

where the dependence of the reaction rates on the reaction constants has been
made explicit. Let r + 1 the number of components of E which are non-zero.
Let NE be the matrix consisting of the columns of N corresponding to the non-
vanishing components of E and NC the matrix whose columns are the other
columns of E. Then

ċ = NEv(k̂E , c) +NCv(k̂C , c). (137)
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The ordinary differential equations for the subnetwork are ċ = NEv(k̂E , c).
Since E is a stoichiometric generator it follows from Lemma 8.2 that the rank
of NE is r and that the kernel of NE consists of the functions whose support is
contained in that of E. Consider an orthonormal basis for the left kernel of N .
We call the matrix whose rows are the vectors of this basis WT . It is a p ×m
matrix. Next consider an orthonormal basis for the left kernel of NE and call
the matrix whose rows are the vectors of the basis WT

E . It is an (m − r) ×m
matrix. The lower elements of WT

E agree with those of WT . The upper ones
are denoted by WT

add. We also consider a matrix SE whose columns are an
othonormal basis of the image of NE . Let T = (SE ,Wadd,W ), an orthogonal
transformation. Let ξ = STEc, η = WT

addc and η̂ = WT c. Then c is the image
of the vector with components (ξ, η, η̂) by T . In these variables the evolution
equations become

ξ̇ = STENEvE(kE , c) + STENCvC(kC , c), (138)

η̇ = WT
addNCvC(kE , c), (139)

(η̂)̇ = 0. (140)

Suppose we have stationary solutions c∗1 and c∗2 for the subnetwork with
reaction constants k∗E . This means that NEvE(k∗E , c

∗
1,2) = 0. Let (ξ∗1,2, η

∗, η̂∗) =

T T c∗1,2. Then

ξ̇ = STENEvE(k∗E , c(ξ
∗
1,2, η

∗, η̂∗)) + STENCvC(kC , c(ξ
∗
1,2, η

∗, η̂∗)), (141)

η̇ = WT
addNCvC(kC , c(ξ

∗
1,2, η

∗, η̂∗)), (142)

(η̂)̇ = 0. (143)

and the first term in the first of these three equations vanishes. For a fixed choice
of k∗E und η̂∗ we define k̂∗E by the conditions that k̂∗E = k∗E on the support of

E and k̂∗E = 0 outside the support of E. Let k = k̂∗E + εk̂C . To determine

stationary solutions of the full system we must find ξ, η und k̂C with

STENEvE(k∗E , c(ξ, η, η̂
∗)) + STENCvC(kC , c(ξ, η, η̂

∗)) = 0, (144)

WT
addNCvC(k,c(ξ, η, η̂

∗)) = 0. (145)

The reaction rates v(c) can be written in the form (diagΨ(c))k. We write
f(k, c) = Nv(k, c) and fc(k, c) for the Jacobian matrix Dcf(k, c).

We now set up the following programme.
(1) Let

STEfc(k̂
∗
E , c
∗
1,2)(SE ,Wadd) = (A∗1,2, B

∗
1,2). (146)

If A∗1,2 is regular then we can define X∗1,2 = −(A∗1,2)−1B∗1,2. Then A∗1,2X
∗
1,2 +

B∗1,2 = 0.
(2) We calculate a positive solution of G∗Cκ0 = 0 where G∗C is the matrix with
upper part WT

addNcdiag(ΨC(c∗1)) and lower part WT
addNcdiag(ΨC(c∗2)) and we

define k̂∗C to be zero on the support of E and κ0 outside the support.
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(3) Let WT
addFx(k̂∗C , c

∗
1,2)(SE ,Wadd) = (C∗1,2, D

∗
1,2). We require that D∗1,2 =

D∗1,2 + C∗1,2X
∗
1,2 is regular.

The following theorem shows this programme leads to two stationary solu-
tions c̃1,2 close to c∗1,2 with the reaction constants k̂∗E + εk̂∗C for ε sufficiently
small. For this purpose we choose a sufficiently small value of ε and solve
Nv(k̂∗E + εk̂∗C) = 0 for c̃1,2 close to c∗1,2.
Theorem 8.1 Suppose that the following conditions hold.
(i) there exist c∗1,2 > 0, k∗E with NEvE(k∗E , c

∗
1,2) = 0.

(ii) there exists κ0 > 0 with G∗Cκ0 = 0.
(iii) A∗1 and A∗2 are regular
(iv) D∗1 and D∗2 are regular Then there exist ε0 > 0 and δ0 > 0 with the
property that 0 < ε < ε0 and |η̂ − η̂∗| < δ0 imply the existence of distinct
positive hyperbolic stationary solutions

c1,2(η̂, ε) =
[
SE Wadd W

]  Ξ1,2(η̂, ε)
H1,2(η̂, ε)

η̂

 (147)

with WT c1(η̂, ε) = WT c2(η̂, ε) for the positive reaction constants k(ε) = k̂∗E +

εk̂∗C .
Proof Applying the orthogonal transformation ξ = STEc, η = WT

addc, η̂ = WT c
gives

ξ̇ = STENv(k̂∗E , c) + STENv(εk̂∗C , c) (148)

η̇ = WaddNv(k̂∗E + εk̂∗C) (149)

(η̂)̇ = 0. (150)

For fixed values of c∗j and k∗E and A∗j regular the equation ξ̇ = 0 has a locally

unique solution ξj = Ξj(η, η̂, εk̂
∗
C) close to (η∗, η̃∗, 0) with A∗jX

∗
j +B∗j = 0, where

X∗j = ∂
∂ηΞj(η, η̃, 0) as a consequence of the implicit function theorem. In order

to obtain solutions with common η̂ components we must solve the equations

WT
addNv(k̂∗C , SEΞ1(η, η̂, εk̂∗C) +Waddη +Wη̂) (151)

WT
addNv(k̂C , SEΞ2(η̃, η̂, εk̂∗C) +Waddη̃ +Wη̂) (152)

for η = H1(η̂, ε) and η̂ = H2(η̂, ε) close to (η∗, η̃∗, η̂∗, 0)). Due to assumtion
(iv) the implicit function theorem shows that functions H1 und H2 of this type
exist. Thus locally there exist stationary solutions

ξ1 = Ξ1(H1(η̂, ε), η̂, ε), η = H1(η̂, ε), η̂, (153)

ξ2 = Ξ2(H2(η̂, ε), η̂, ε), η = H2(η̂, ε), η̂ (154)

for ε > 0 sufficiently small. The corresponding stationary solutions c∗1,2 are
obtained from the theorem as c∗1,2(η̂, ε).
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Consider the example of the extended Michaelis-Menten description of a
single reaction. We have

N =


−1 1 0
−1 1 1
1 −1 −1
0 0 1

 , Ia =

 −1 1 0
1 −1 −1
0 0 1

 . (155)

In addition dim kerN = dim kerIa = 1 and the kernel is spanned by the vector
with components (1, 1, 0). This vector is an elentary flux mode (the only one)
and is not a stoichiometric generator. For the simple futile cycle we get

N =


−1 1 0 0 0 1
−1 1 1 0 0 0
1 −1 −1 0 0 0
0 0 1 −1 1 0
0 0 0 −1 1 1
0 0 0 1 −1 −1

 , Ia =


−1 1 0 0 0 0
1 −1 −1 0 0 0
0 0 1 0 0 0
0 0 0 −1 1 0
0 0 0 1 −1 −1
0 0 0 0 0 1

 .
(156)

The kernel of N is of dimension three and is spanned by the vectors with the
following components: (1, 1, 0, 0, 0, 0), (1, 0, 1, 1, 0, 1) and (0, 0, 0, 1, 1, 0). The
first and third are in the kernel of Ia but the second is a stoichiometric generator.
The subnetwork it defines is got by switching off the treactions in which a
substrate-enzyme complex dissociates into its original constituents, According
to the general theory this network has deficiency one and it is clear that it
satisfies the condition t = l. Thus the deficiency one algorithm can be applied
to it.

We now consider the dual futile cycle from this point of view. In this case

N =



−1 1 0 0 0 0 0 0 0 0 0 1
−1 1 1 −1 1 1 0 0 0 0 0 0
1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 1 −1 1 0 0 0 1 −1 1 0
0 0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 1 −1 1 0 0 0 0
0 0 0 0 0 0 −1 1 1 −1 1 1
0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 −1


.

(157)
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and

Ia =



−1 1 0 0 0 0 0 0 0 0 0 0
1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 1 −1 1 0 0 0 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 1


.

(158)
The kernel of Ia is the direct sum of the kernels of the two 5×6 blocks. The kernel
of the first block is spanned by the vectors (1, 1, 0, 0, 0, 0) und (0, 0, 0, 1, 1, 0).
The dimension of the kernel of Ia is four. The dimension of the kernel of N
is four and two further elementary flux modes are (1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)
and (0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0). The corresponding subnetworks are the two
simple futile cycles which are contained in the dual futile cycle. These two
do not exhibit multistationarity so that the general method provides no useful
information in this case.

Now models for another biological system will be considered. This is the
Calvin cycle of photosynthesis. In the simplest model the species are Ru5P
(ribulose-5-phosphate), RuBP (ribulose bisphosphate), PGA (phosphoglycer-
ate), DPGA (diphosphoglycerate) und GAP (glyceraldehyde phosphate). In
the simplest case a network for these substances is used under the assumption
of mass action kinetics.
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We have

N =


−1 0 0 0 1 0 0
2 −1 0 0 0 −1 0
0 1 −1 0 0 0 0
0 0 1 −5 0 0 −1
0 0 0 3 −1 0 0

 , Ia =



0 0 0 0 −1 0 0
−1 0 0 0 1 0 0
1 0 0 0 0 0 0
0 −1 0 0 0 −1 0
0 1 −1 0 0 0 0
0 0 1 0 0 0 −1
0 0 0 0 0 1 1
0 0 0 −1 0 0 0
0 0 0 1 0 0 0


.

(159)
Some parameters of the system are m = 5, n = 9, l = 3, s = 5, δ = 1, r = 7.
The kernel of Ia is spanned by the vector (0, 1, 1, 0, 0,−1, 1) and thus contains no
positive vectors. The kernel of N is spanned by the vectors (3, 6, 6, 1, 3, 0, 1) and
(3, 5, 5, 1, 3, 1, 0). In the corresponding networks one of the sinks is switched off.
It can be shown using the Deficiency One Algorithm that this system does not
permit bistationarity. In fact in this case the equations for stationary solutions
can be solved explicitly. Depending on the reaction constants there is no or
exactly one stationary solution. The first subnetwork always has exactly one
stationary solution while the second has none. It is interesting that while the
original network satisfies the condition t = l the second subnetwork does not.

In a more complicated model an extended Michaelis-Menten description is
used for all the reactions in the simple network. We call this the MM-MA model.
The elementary flux modes for this larger model were calculated in [13]. There
are two of them and they are analogous to the two modes for the simple system
which we have presented. By means of this calculation it was possible to prove
bistability for this system.

9 The Advanced Deficiency Algorithm

Another possibility to analyse networks with δ > 1 is the Advanced Deficiency
Algorithm, a generalization of the Deficiency One Algorithm. It produces a
system of inequalities which are to be checked. In contrast to the case of the
Deficiency One Algorithm it can happen that these inequalities are nonlinear. It
is nevertheless often the case that the inequalities are linear and even when this
is not the case useful information can often be obtained from those inequalities
which are linear. There are quantities µ as in the Deficiency One Algorithm and
the inequalities are linear in these quantities. There are, however, in general ad-
ditional quantities M which can occur in the inequalities in a nonlinear manner.
The Advanced Deficiency Algorithm produces systems of inequalities which are
tests for the presence of multistationarity in a network. If one of them has a
solution multistationarity occurs. A system of this kind which has a solution is
called a signature of the network. If none of the systems have a solution then
there is no multistationarity.
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Step 1. In the Advanced Deficiency Algorithm an orientation O of the network
is chosen. This means choosing a subset of the network that for each reversible
reaction exactly one of the two directions belongs to the subset. Each irreversible
reaction is in the subset. This choice does not influence the outcome of the
algorithm.
Step 2. In the next step colinearity classes are defined. Let p be the number of
elements in O. We define a linear mapping LO from Rp to Rm by

LOα =
∑
yy′∈O

αyy′(y
′ − y). (160)

We now consider the kernel of this mapping. Let {v1, . . . , vd} be a basis for this
kernel. The dimension of the kernel is d = p− s and is always at least as large
as the deficiency. These two quantities are equal precisely when each reaction
in the network is a cut pair. For each reaction yy′ ∈ O we define a vector wyy′

by

wyy′ =

d∑
j=1

vyy′(j)ωj (161)

When a reaction yy′ is not in O then y′y ∈ O and we define wyy′ = wy′y.
With vectors we define the colinearity classes of the network. Two reactions

are in the same colinearity class when there is a constant c 6= 0 with wyy′ =
cwpp′ . A reversible reaction and the reverse reaction are in the same class.
There is a special colinearity class called the zero class in which the the w
vectors are zero. A colinearity class is called reversible when each reaction in
the class is reversible. If any reaction in the class is irreversible the class is
called irreversible. At this point it possible to give a necessary condition for
multistationarity. If the zero colinearity class is irreversible then there can be
no multistationarity. It is even the case that a network of this type admits no
positive stationary solutions. In this case the algorithm can be broken off at
this point. It turns that the colinearity classes depend neither on the choice of
O nor on the choice of a basis of the kernel.
Step 3. The next step is to define the colinkage sets. The network is split
into subsets which are the different colinearity classes. A linkage class of a
subnetwork of this type is called a colinkage set. It is possible to define strong
colinkage sets and terminal strong colinkage sets in a similar way.
Step 4. For each colinearity class we define a representative vector called a
colinearity class vector. If a class contains an irreversible reaction then this
vector can be any positive multiple of wyy′ . If a reaction network contains
two irreversible reactions yy′ und pp′ in the same class with wyy′ = cwpp′ for
a negative constant c then there is no multistationarity. There is not even a
positive stationary solution. In this case the algorithm can be broken off. If a
class is reversible then the colinearity class vector can be a positive multiple of
any reaction yy′ in the class. For the zero colinearity class zero the colinearity
class vector is always zero.
Step 5. Realign the orientation. It is convenient to have each w-vector to be a
positive multiple of the corresponding colinearity class vector. When attempting
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to achieve this situation there is nothing to do for the irreversible reactions. In
the case of the reversible reactions yy′ is replaced by y′y in each case where the
original sign was false.
Step 6. Find coplanar sets and connected classes. Here we need two definitions.
A coplanar set J is a set of non-zero colinearity classes with the following
properties.
(i) The set J contains at least three colinearity classes
(ii) the colinearity class vectors in J lie in the same two-dimensional linear
subspace. In other words each colinearity class vector in J can be written as a
linear combination of any two other colinearity class vectors in J
(iii) each colinearity class vector in the plane in (ii) is in J

The coplanar sets are need not be a partition of the classes. These sets can
intersect. It is also possible that a class belongs to none if these sets. It can
even happen that a network has no such set.

There exists an equivalence relation on the set of non-zero colinearity classes.
Two classes Pi und Pj are said to be directly connected if they belong to a
common coplanar set. Two classes are said to be connected if they satisfy one
of the following three properties
(i) the two classes are equal
(ii) the two classes are directly connected
(iii) there is a chain of direct connections from Pi to Pj

The corresponding equivalence classes are called connected classes. If a
network has more than two non-zero colinearity classes and the dimension of
the kernel of LO is two then it has only one coplanar class which contains all
non-zero colinearity classes. We now define the connecting graph. The nodes
are the non-zero colinearity classes and the coplanar sets. The edges connect
colinearity classes with coplanar sets according to the following rule. There is
an edge between a colinearity class and a coplanar set if the class is contained
in the coplanar set. The connected classes are the connected components of this
graph.
Step 7. Determine linearity. A system of inequalities which is used to inves-
tigate multistationarity and which has a solution is called a signature. Now
two conditions will be given which together guarantee that each solution of the
system of inequalities set up in this section is a signature. The conditions are
Independence linearity condition. The sum of the number of coplanar sets and
the number of connected classes is d, the dimension of the kernel of LO.
Triplet independence condition. No coplanar set contains more than three col-
inearity classes.

If one of these conditions is not satisfied there are possibilities to improve
the situation.

Steps 1.-7. are the preliminary steps in the Advanced Deficiency Algorithm.
The next steps are the heart of the algorithm. In steps 8. and 9 the colinearity
classes are assigned signs and a partition of the complexes is defined. Here we
adopt a terminology due to Ellison and call the subsets in this partition shelves.
For each choice systems of inequalities are produced in steps 10. to 14.
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Step 8. Choose signs for the colinearity classes. Each class is given a sign
according to the following rules.
(i) the zero class has the sign zero
(ii) an irreversible class has a positive sign
(iii) a reversible class can have any sign which is compatible with the following
conditions (iv)-(vi)
(iv) if more than one colinearity class in a coplanar set has the sign zero then
each class in this set has the sign zero
(v) if there are three colinearity classes Pi, Pj and Pk in the same coplanar set
whose signs are all non-zero then there exist three numbers ci, cj und ck with
the signs of the corresponding classes which satisfy the condition ciw

i + cjw
j +

ckw
k = 0.

(vi) if there are three colinearity classes Pi, Pj and Pk in the same coplanar
set with the property that Pi has the sign zero and Pj and Pk signs which are
non-zero then there exist three numbers ci, cj und ck such that cj and ck have
the same sign which satisfy the condition ciw

i + cjw
j + ckw

k = 0.
If there is no choice of signs for which these conditions are satisfied then there

is no multistationarity. There are not even any positive stationary solutions. In
this case the algorithm can be broken off.
Step 9. Choose shelves for the complexes. There are two differences to the
Deficiency One Algorithm. Firstly, it is the reactions and not the complexes
which are put into the shelves. Secondly, there are upper, middle and lower
shelves for each colinearity class with non-zero sign.

We consider a fixed colinearitry class with non-zero sign. We denote the
upper, middle and lower shelves by U , M und L. The conditions are
(i) a reaction whose left hand side is in a non-terminal strong colinkage class is
in M
(ii) an irreversible reaction is in M
(iii) a reversible reaction whose left hand side is in a terminal strong colinkage
class can be in U , M or L provided reactions in the same colinearity class whose
left hand sides are in the same strong colinkage set are put in the same shelf.
Step 10. Shelving inequalities. If a reaction yy′ is in the middle shelf of a
colinearity class Pi then µ · y = Mi. If yy′ is in the upper shelf of the class Pi
then µ · y > Mi. If yy′ is in the lower shelf of the class Pi then µ · y < Mi.
Step 11. Further inequalities for the upper and lower shelves. If a reaction yy′

in O is in the upper shelf of a class with positive sign or in the lower shelf of a
class with negative sign then the inequality µ · y′ > µ · y holds. If a reaction yy′

in O is in the upper shelf of a class with negative sign or in the lower shelf of a
class with positive sign then the inequality µ · y′ < µ · y holds.
Step 12. Inequlities for classes with sign zero. For each reaction yy′ in O which
belongs to a class with sign zero the equation µ = y = µ = y′ holds.
Step 13. Inequalities for the quantities Mi. If all classes in a coplanar set have
the sign zero then no further inequalities arise. If Pi, Pj and Pk are in the same
coplanar set and Pi has sign zero while Pj and Pk have non-zero signs then
gilt Mj = Mj . If all classes in a coplanar set have non-zero sign then there is
a choice. If there exist constants ci with the same signs as their classes which
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satisfy ckw
k = ciw

i+cjw
j then one of the following three conditions must hold.

Mi > Mj > Mk, Mi = Mj = Mk or Mi < Mj < Mk.
Step 14. Are there solutions of the system of inequalities? The inequalities which
were listed up to now are the full set of linear inequalities for the network. If
the system has a solution then this is called a pre-signature for the network. If
it is known that linear inequalities suffice then each pre-signature is a signature.

In the search for presignatures all choices must be checked. If there are no
pre-signatures then multistationarity is not possible.

The analysis of the nonlinear conditions will not be considered further here.
Instead the constructions up to now will be illustrated using an example. This
example does not come from a particular application but was chosen so as to
allow a better understanding of the theory. The network contains six species
A1 −A6.

Now the algorithm will be applied to this network. The subset O can be
chosen as the reactions A1 → 0, 0 → A2, A3 → 0, A1 + A2 → A3, A1 +
A4 → A5, A2 + A4 → A6 and A2 + A5 → A3 + A4. Thus there are seven
reactions in O. In this network there are six species. Thus in this case LO is
a mapping from R7 to R6. The corresponding matrix is made up a choice of
columns of the stoichiometric matrix. The rank of this matrix is 5 and hence
its kernel has dimension two. A basis of the kernel consists of the vectors
[−1, 1, 1, 1, 0, 0, 0]T and [−1, 1, 1, 0, 1, 0, 1]T . The w-vectors are the rows of the
matrix whose columns are these vectors. We get the vectors [−1,−1], [1, 1],
[1, 0], [0, 1] und [0, 0]. The are four colinearity classes.

P0 = {A2 +A4 → A6, A6 → A2 +A4},
P1 = {A1 → 0, 0→ A1, A2 → 0, 0→ A2, A3 → 0},
P2 = {A1 +A2 → A3},
P3 = {A1 +A4 → A5, A2 +A5 → A3 +A4}. (162)

P0 is the zero colinearity class. Only P0 is reversible. These classes define
four subnetworks. There are five colinkage classes and nine strong colinkage
sets. The strong colinkage set {A3} belongs to two different colinearity classes.
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It is non-terminal with respect to P1 and terminal terminal with respect to
P2. We choose w0 = [0, 0]T , w1 = [1, 1]T , w2 = [1, 0]T and w3 = [0, 1]T as
representatives of the classes. In Step 5 we only have to reverse the direction of
one reaction. A1 → 0 is replaced by 0 → A1. In the example there is only one
coplanar set {P1,P2,P3}. Up to and including Step 7 the rest of the discussion
is trivial for this example. In Step 8 there is only one possible choice of signs
for this network. P0 is given the sign zero and the other classes, which are all
irreversible, are given a positive sign. All conditions are satisfied. In particular
condition (v) holds. We must choose shelves for three different classes.

The left hand sides of the reactions A3 → 0, A1 +A2 → A3, A1 +A4 → A5

und A2 + A5 → A3 + A4 are in non-terminal colinkage sets, so that they must
be in the middle shelves of their colinkage classes. The second condition implies
that the same reactions are in the middle shelves. The reactions A1 → 0,
0 → A1, A2 → 0 and 0 → A2 are in the class P1 and their left hand sides are
in the same terminal strong colinkage set (with respect to P1) and they must
be in the same shelf. Suppose they are all in the upper shelf. Then we get the
distribution

U1 = {A1 → 0, 0→ A1, A2 → 0, 0→ A2},M1 = {A3 → 0}, L1 = ∅
U2 = ∅,M2 = {A1 +A2 → A3}, L2 = ∅
U3 = ∅,M2 = {A1 +A4 → A5, A2 +A5 → A3 +A4}, L3 = ∅ (163)

Step 10 gives the following inequalities. µ1 > M1, µ2 > M1, 0 > M1, µ3 = M1,
µ1 + µ2 = M2, µ1 + µ4 = M3 and µ2 + µ5 = M3. In Step 11 the inequalities
µ1 > 0 and µ2 > 0 are added. In Step 12 we get µ2 + µ4 = µ6. Since the
relation w1 = w2 + w3 holds one of the relations M2 > M1 > M3, M2 =
M1 = M3 or M2 < M1 < M3 is obtained in Step 13. Here we concentrate
on the third possibility. In this case there are no solutions with µ 6= 0 which
have signs compatible with the stoichiometric subspace. Thus this system is
not a signature. (For this system µ has signs comptible with the stoichiometric
subspace if and only if either the set {µ4, µ5, µ6} contains a positive and a
negative number or all three numbers are zero.)

There two other choices in Step 12 which must be examined. For the choice
M2 = M1 = M3 there is again no solution. In the case M2 > M1 > M3 there are
solutions, e.g. µ = [1, 4,−1,−3,−6, 1], M1 = −1, M2 = 5 and M3 = −2. We
obtain a signature. A choice was also made in Step 9. There is an alternative
possibility. With the new choice we get three systems of inequalities. It turns
out that none of these has acceptable solutions.

We will prove some statements which have to do with the linear inequalities.
Theorem 9.1 We consider a colinearity class Pi and shelves for the reactions
in Pi with the properties that both reactions of a reversible pair are in the same
shelf and all irreversible reactions are in the middle shelf. If a vector µ and
a number Mi exist so that the inequalities from Step 10 are satisfied then all
reactions in Pi whose left hand sides are in the same colinkage class must be in
the same shelf.
Proof It is given that if yy′ is a reversible reaction then yy′ and y′y are in the
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same shelf. If two reactions in Pi have the same left hand side y they must be
in the same shelf since if they were in different shelves the system would satisfy
two of the inequalities y· > µ, y· = µ and y· < µ, a contradiction.

Suppose that all reactions in Pi whose left hand sides are in a given strong
colinkage set are reversible. Let yy′ and pp′ be two reactions of this kind whose
left hand sides are in the given set. There must exist a path y, y1, · · · , yt, p in
the colinearity class. All these reactions are reversible. Since yy1 is reversible
the reactions yy1 and y1y must be in the same shelf. At the same time y1y and
y1y2 must be in the same shelf. This reasoning can be continued to see that yy1

and pyt are in the same shelf. Hence yy′ and pp′ are in the same shelf. This
proves one case of the theorem.

Now suppose instead that there is a complex p in the given strong linkage
set with the property that pp′ is an irreversible reaction in Pi. Since pp′ is
irreversible it must be in the middle shelf. Let yy′ be another reaction in the
colinearity class whose left hand side is in the given colinkage set. If yy′ is
irreversible it must be in the middle shelf. Suppose that yy′ is reversible. Since
y and p are in the same strong colinkage set there is a path (y, y1, . . . , yt, p)
consisting of reactions in Pi. yy′ and yy1 are in the same shelf. If yy1 is
irreversible then it must be in the middle shelf. Otherwise yy1 would have to
be in the same shelf as y1y. It is also the case that y1y is in the same shelf as
y1y2. If we continue wiht this logic we see that either yy′ is in the middle shelf
or that yy′ is in the same shelf as pp′. But pp′ is in the middle shelf. Thus in
either case yy′ is in the middle shelf. This completes the proof.

A first useful observation when we are looking for bistability is that Lemma
7.7 also holds in the present case. Thus the task is to ask whether certain
equations for quantities µ und κyy′ have a solution. We now define gyy′ as
κyy′ − κy′y for yy′ reversible and κyy′ for yy′ irreversible and hyy′ as ey·µκyy′ −
ey
′·µκy′y for yy′ reversible und ey·µκyy′ for yy′ irreversible. Then the essential

equations can be written in the form

LOh =
∑
yy′∈O

hyy′ = 0, LOg =
∑
yy′∈O

gyy′ = 0. (164)

What we need is exactly that g and h are in the kernel of LO. We choose a basis
of the kernel and conclude that g =

∑d
i=1 λiv

i and h =
∑d
i=1 ηiv

i for suitable
coefficients λi and ηi. The vectors g and h can also be expressed in terms of the
w-vectors. gyy′ = λ · wyy′ and hyy′ = η · wyy′ . These equations can be used to
eliminate g and h from the equations in Lemma 7.7. The result is that λ · wyy′
is given by κyy′ − κy′y for yy′ reversible and κyy′ for yy′ irreversible and that

η ·wyy′ is given by ey·µκyy′ − ey
′·µκy′y for yy′ reversible and by ey·µκyy′ for yy′

irreversible. Out task has now been reformulated as the search for the vectors
λ and η. Now we would like to eliminate the coefficients κyy′ . Suppose first
that yy′ is irreversible. Then κyy′ = λ ·wyy′ and κyy′e

y·µ = η ·wyy′ . In order to

have κyy′ > 0 we need the conditions λ ·wyy′ > 0 and
η·wyy′
λ·wyy′

= ey·µ when yy′ is

irreversible. Thus we have
Theorem 9.2 If the w-vectors of two irreversible reactions in the same colin-
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earity class point in opposite directions then there exist no positive stationary
solutions.
Proof Suppose that yy′ and pp′ are two irreversible reactions in the same col-
inearity class which point in opposite directions, i.e. that there exists a positive
number c with wyy′ = −cwpp′ . Taking the inner product of this equation with
λ gives a contradiction.
Theorem 9.3 If the zero colinearity class is irreversible there exist no positive
stationary solutions.
Proof If the zero colinearity class is irreversible there is an irreversile reaction
yy′ whose representative wyy′ is zero. It then follows that λ · wyy′ = 0, a
contradiction.

10 Summary

In this course various tools of Chemical Reaction Network Theory (CRNT)
have been introduced. Various possibilities have been explained how it can be
decided whether the equations with mass action kinetics defined by a reaction
network have more than one positive stationary solution in a stoichiometric
class. The aim is to decide whether there are reaction constants for which such
solutions exist or whether there are no such reaction constants. In this context
the concept of deficiency plays a central role. Now some aspects of these results
will be summarized.

If a system has deficeincy zero then multistationarity is always ruled out. It
is also relatively easy to decide, with the help of the Deficiency Zero Theorem,
whether there are any positive stationary solutions at all. A necessary and
sufficient condition is that the network is weakly reversible. If the network is
weakly reversible then the stationary solution is asymptotically stable. Thus
good control over the asymptotic behaviour is available in the weakly reversible
case. If the system is not weakly reversible then the usual theory does not say
much about the long-time behaviour.

If a network has deficiency one then the Deficiency One Algorithm is avail-
able. There is the condition of positive dependence. When this condition does
not hold there exist no positive stationary solutions. It can only fail for networks
which are not weakly reversible. There is also a graph-theoretic condition on the
network which is needed to allow the Deficiency One Algorithm to be applied.
There is also the condition t = l. With the help of these conditions a large class
of networks are identified for which a powerful tool is available. In this case the
Deficiency One Algorithm provides an equivalence between multistationarity
and the existence of a solution of at least one system of linear inequalities taken
from a finite set. Conditions are obtained which can be checked by hand or by
computer. This provides a programme which can be applied to study networks
of deficiency one. In the case that there is multistationarity no information is
obtained about the number of stationary solutions. If there is no multistation-
arity no information is obtained about whether there is any positive solution at
all. No information is obtained about the stability of the statinary solutions.
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The Deficiency One Theorem gives information about multistationarity for
certain networks with δ arbitrarily large but in comparison with other results of
the theory this result seems to be quite isolated. The Advanced Deficiency Algo-
rithm is an analogue of the Deficiency One Algorithm which can in principle be
applied to arbitrary networks. Is some case multistationarity can be excluded.
Otherwise a criterion is obtained for multistationarity which is necessary and
sufficient. The perhaps greatest difference to the Deficiency One Algorithm is
that the inequalities obtained are partly nonlinear. It must be asked to what
extent the inequalities obtained are simpler than the equations for statoinary
solutions themselves. At least there is a programme for investigating multista-
tionarity in networks with arbitrary deficiency. There exists an extension of the
Advanced Deficiency Algorithm called the Higher Deficiency Algorithm [18].

Another method of obtaining a better understanding of networks with δ > 0
is the method of elementary flux modes. This gives networks of deficiency one
starting from a given network. If the small networks permit multistationarity
then the big one often does so too. A disadvantage of this method is it can only
find multistationarity in a small part of the parameter space. An advantage is
that statements about stability can be propagated from the small to the large
network.

References

[1] Angeli, D. und Sontag, E. D. 2006 Translation-invariant monotone systems
and a global convergence result for enzymatic futile cycles. Nonlin. Anal.
RWA 9, 128–140.

[2] Conradi, C., Flockerzi, D., Raisch, J. and Stelling, J. 2007. Subnetwork
analysis reveals dynamic features of complex (bio)chemical networks. Proc.
Nat. Acad. Sci. (USA) 104, 1917519180.

[3] Conradi, C. und Shiu, A. 2015 A global convergence result for processive
multisite phosphorylation systems. Bull. Math. Biol. 77, 126155.

[4] Craciun, G. 2015 Toric differential inclusions and a proof of the global
attractor conjecture. Preprint arXiv:1501.02860.

[5] Ellison, P. R. 1998 The advanced deficiency algorithm and its applications
to mechanism discrimination. PhD thesis, University of Rochester.

[6] Feinberg, M. 1972 Complex balancing in general kinetic systems. Arch.
Rat. Mech. Anal. 49, 187–194.

[7] Feinberg, M. and Horn, F. J. M. 1977 Chemical mechanism structure and
the coincidence of the stoichiometric and kinetic subspaces. Arch. Rat.
Mech. Anal. 66, 83–97.

[8] Feinberg, M. 1980 Lectures on chemical reaction networks. Available at the
address http://www.crnt.osu.edu/LecturesOnReactionNetworks

62



[9] Feinberg, M. 1987 Chemical reaction network structure and the stability
of complex isothermal reactors I. The Deficiency Zero and Deficiency One
Theorems. Chem. Eng. Sci. 42, 2229–2268.

[10] Feinberg, M. 1988 Chemical reaction network structure and the stability
of complex isothermal reactors II. Multipele steady states for networks of
deficiency one. Chem. Eng. Sci. 43, 1–25.

[11] Feinberg, M. 1995 The existence and uniqueness of steady states for a class
of chemical reaction networks. Arch. Rat. Mech. Anal. 132, 311-370.

[12] Feinberg, M. 1995 Multiple steady states for chemical reaction networks of
deficiency one. Arch. Rat. Mech. Anal. 132, 371–406.

[13] Grimbs; S., Arnold, A., Koseska, A., Kurths, J. Selbig, J. und Nikoloski, Z.
2011 Spatiotemporal dynamics of the Calvin cycle: multistationarity and
symmetry breaking instabilities. Biosystems 103, 212–223.

[14] Gunawardena, J. 2003 Chemical reaction network the-
ory for in silico biologists. Available at the address
http://vco.med.harvard.edu/papers/crnt.pdf.

[15] Hale, J. K. 2009 Ordinary Differential Equations. Dover, Mineola.

[16] Horn, F. und Jackson, R. 1972 General mass action kinetics Arch. Rat.
Mech. Anal. 47, 81–116.

[17] Horn, F. 1974 The dynamics of open reaction systems. In: Mathemati-
cal aspects of chemical and biochemical problems and quantum chemistry.
Amer. Math. Soc. 125–137.

[18] Ji, H. 2011 Uniqueness of equilibria for complex chemical reaction networks.
PhD thesis, Ohio State University.

[19] Rendall, A. D. 2012 Mathematics of the NFAT signalling pathway. SIAM
J. Appl. Dyn. Sys. 11, 988-1006.

[20] Rockafellar, R. T. 1970 Convex analysis. Princeton University Press,
Princeton.

[21] Sontag, E. D. 2001 Structure and stability of certain chemical networks
and applications to the kinetic proofreading model of T-cell receptor signal
transduction. IEEE Trans. Aut. Control 46, 1028–1047.

[22] Stoer, J. und Witzgall, C. 1970 Convexity and optimization in finite di-
mensions. Springer, Berlin.

[23] Wang, L. and Sontag, E. D. 2008 On the number of steady states in a
multiple futile cycle. J. Math. Biol. 57, 29–52.

63


